## THEORY OF MULTIQUARK STATES A Challenge to Our Understanding of the Particle Spectrum .

March 14, 2024 | Christoph Hanhart | IKP/IAS Forschungszentrum Jülich


## CHARMONIUM BEFORE 2003

Quark-Model: Eichten et al. PRD 17 (1978)


## $\bar{Q} Q$ POTENTIAL FROM LATTICE

Potential of two static color sources


## STRINGBREAKING

Adding light quarks: $Q \bar{Q} \rightarrow(Q \bar{q})(\bar{Q} q)$ becomes possible

$\Longrightarrow$ string breaking for energies above first open flavor threshold

## PROVIDES NEW PHENOMENA



## THE NAME OF THE GAME:



TETRAQUARK


Picture by Soeren Lange
How can one disentangle the different multiquark structures?


## DISCLAIMER

In what follows I focus on individual scenarios, in the spirit of
What if the exotics were pure .... (put your favourite appraoch)
So far little work on the possible mixing of the structures.
Promising approach: Dyson-Schwinger equations for multiquark states

J. Hoffer, G. Eichmann and C. S. Fischer, [arXiv:2402.12830 [hep-ph]].

So far exploratory studies for spectra, no uncertainty estimates yet ....

## HEAVY TETRAQUARKS

- Straightforward extension of the quark model
M. Gell-Mann, PL8(1964)214
- Mesons as diquark-anti-diquark systems

Jaffe, PRD15(1977)267, Maiani et al., PRD71(2005)014028

- Building blocks: Spin 0 and 1 heavy-light diquarks
- Separated by potential well

Selem and Wilczek, hep-ph/0602128; Maiani et al., PLB778(2018)247

- Spin-spin interaction dominant within diquarks

Maiani et al. PRD89(2014)114010

- and tensor force, $S_{12}$, needs to be considered

Ali et al. EPJC78(2018)29

$$
M=2 M_{\mathcal{Q}}+\frac{B_{\mathcal{Q}}}{2} \mathbf{L}^{2}+2 a_{Y} \mathbf{L} \cdot \mathbf{S}+\frac{b_{Y}}{4} S_{12}+2 \kappa_{c q}\left(\mathbf{S}_{\mathbf{q}} \cdot \mathbf{S}_{\mathbf{c}}+\text { c.c. }\right)
$$

alternative approaches, e.g., Cui et al., HEPNP31(2007)7; Stancu, JPG37(2010) 075017; Bhavsar et al., NPA1000(2020)121856
$\rightarrow$ Already many ground states
$\rightarrow$ Each level has isovector and isoscalar state (cf. $\rho$ and $\omega$ )

## RESULTS FOR NEGATIVE PARITY STATES

- four $1^{--}$ground states: $P$-wave \& $[0,0]_{0},[1,0]_{1}+[0,1]_{1},[1,1]_{0},[1,1]_{2}$
- BESIII claims 2 in $J / \psi \pi \pi$



BESIII, PRL118(2017)092001

- Without tensor force very light $3^{--}$
- Many more states predicted than observed!

Maybe since di-quark picture too restrictive/constraining?

## HADROCHARMONIUM

- Extra states are viewed as compact $\bar{Q} Q$ surrounded by light quarks
- Provides natural explanation why, e.g., $Y(4260)$ is seen in $J / \psi \pi \pi$ final state but not in $\bar{D} D$
- Heavy quark spin symmetry demands that spin of the core is conserved in decay to charmonia
- Explaining $e^{+} e^{-} \rightarrow h_{c} \pi \pi$ needs mixing between states with $s_{\bar{c} c}=0$ and $s_{\bar{c} c}=1$ leading to $Y(4260)$ and $Y(4360)$

Li \& Voloshin MPLA29(2014)1450060


## HADROCHARMONIUM: NEW STATES

The above mentioned mixing suggests for the unmixed states:

$$
\Psi_{3} \sim\left(1^{--}\right)_{c \bar{c}} \otimes\left(0^{++}\right)_{q \bar{q}} \quad \Psi_{1} \sim\left(1^{+-}\right)_{c \bar{c}} \otimes\left(0^{-+}\right)_{q \bar{q}},
$$

where the heavy cores are $\psi^{\prime}$ and $h_{c}$.
$\longrightarrow$ get spin partners via $\psi^{\prime} \rightarrow \eta_{c}^{\prime}$ and $h_{c} \rightarrow\left\{\chi_{c 0}, \chi_{c 1}, \chi_{c 2}\right\}$


Cleven et al., PRD 92(2015)014005
Special feature: very light $0^{-+}$state that should not decay to $D^{*} \bar{D}$

## HADRONIC MOLECULES

review article: Guo et al., Rev. Mod. Phys. 90(2018)015004

- are few-hadron states, bound by the strong force
- do exist: light nuclei.
e.g. deuteron as $p n$ \& hypertriton as $\wedge d$ bound state
- are located typically close to relevant continuum threshold;

$$
\text { e.g., for } E_{B}=m_{1}+m_{2}-M\left(\gamma=\sqrt{2 \mu E_{B}} ; \mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)\right)
$$

- $E_{B}^{\text {deuteron }}=2.22 \mathrm{MeV}(\gamma=40 \mathrm{MeV})$
- $E_{B}^{\text {hypertriton }}=(0.13 \pm 0.05) \mathrm{MeV}$ (to $\left.\wedge d\right)(\gamma=26 \mathrm{MeV})$
- can be identified in observables (Weinberg compositeness):

$$
\frac{g_{\mathrm{eff}}^{2}}{4 \pi}=\frac{4 M^{2} \gamma}{\mu}\left(1-\lambda^{2}\right) \rightarrow \boldsymbol{a}=-2\left(\frac{1-\lambda^{2}}{2-\lambda^{2}}\right) \frac{1}{\gamma} ; \quad r=-\left(\frac{\lambda^{2}}{1-\lambda^{2}}\right) \frac{1}{\gamma}
$$

where $\left(1-\lambda^{2}\right)=$ probability to find molecular component in bound state wave function
Are there mesonic molecules?

## GENERAL CONSIDERATIONS

Constituents must be narrow. Heavy candidates ( $M, \Gamma$ in MeV )
$D\left(0^{-}, M=1865, \Gamma \simeq 0\right) ; D^{*}\left(1^{-}, M=2007, \Gamma \simeq 0.1\right)$
$D_{1}\left(1^{+}, M=2420, \Gamma \simeq 30\right) ; D_{2}^{*}\left(2^{+}, M=2460, \Gamma \simeq 50\right)$
$D_{0}(2400)$ and $D_{1}(2430)$ with $\Gamma=300 \mathrm{MeV}$ too broad $\ldots$


- Explains mass gap

$$
\begin{aligned}
& M_{Y(4260)}-M_{X(3872)}=388 \mathrm{MeV} \simeq \\
& M_{D_{1}(2420)}-M_{D^{*}}=410 \mathrm{MeV}
\end{aligned}
$$

- Predicts, e.g.,
$M\left(0^{-}\right)-M\left(1^{-}\right) \simeq M_{D^{*}}-M_{D}$
$\simeq+100 \mathrm{MeV}$
microsopic calc.: T. Ji et al. PRL129(2022)102002
For tetraquark:

$$
M\left(0^{-}\right)-M\left(1^{-}\right) \simeq+50 \mathrm{MeV}
$$

For hadrocharmonium:

## EXAMPLE: $Y(4230)$ AS $D_{1} \bar{D}$ MOLECULE



- Inclusion of $D_{1} \bar{D}$ intermediate states ( $g_{Y D_{1} D}$ large for molecule)
- Inclusion of charmonium $\psi(4160)\left(M_{\psi(4160)}=4191 \mathrm{MeV}\right)$


## IMPACT OF $\psi(4160)$



Well established $\bar{c} c$ state
Parameters from RPP2023:
2023 update of R. L. Workman et al. [PDG], PTEP2022 (2022)083C01
$m_{\Psi(4160)}=(4191 \pm 5) \mathrm{MeV}$
$\Gamma_{\Psi(4160)}=(70 \pm 10) \mathrm{MeV}$

Experimental extractions:
$D^{0} D^{*-} \pi^{+}: \Gamma_{Y}=(77 \pm 6.3 \pm 6.8) \mathrm{MeV}$
BESIII, PRL130(2023) 121901
$J / \psi \pi^{+} \pi^{-}: \Gamma_{Y}=(41.8 \pm 2.9 \pm 2.7) \mathrm{MeV}$
in both cases $\psi(4160)$ omitted
$\mu^{+} \mu^{-}: \quad \Gamma_{Y}=(47.2 \pm 22.8 \pm 10.5) \mathrm{MeV}$
with $\psi(4160)$ included

## ROLE OF $D_{1} \bar{D}$ CUT



## SUMMARY AND PERSPECTIVES

- These are exciting times in (heavy meson) spectroscopy
- The recent and future data have the potential to allow us to identify the prominent components in XYZ states
to-do for experiment
- Continue great performance! Especially needed:
- data for different quantum numbers and
- data for line shapes
to-do for theory
- Provide more predictions for the different scenarios
- Go beyond most simple approaches
e.g. study interplay of regular quarkonia with exotics
- potentially significant mixing

Kalashnikova et al., PRD80(2009)074004; Takizawa et al., PTEP(2013)093D01; Ortega et al., JPG 40(2013)065107;
Coito et al., EPJC73(2013)2351; Cincioglu et al., EPJC76(2016)576

- negligible mixing
van Beveren et al., PLB641(2006)265; Hammer et al., EPJA52(2016)330, C.H. et al., PRD106(2022)114003
Thanks a lot for your attention


# Backup Slides 



## QQā̄̄ TETRAQUARKS

Recently growing number of claims for those tetraquarks, e.g.

- from QCD sum rules
- from lattice QCD
- from phenomenology

Ader et al., PRD 25(1982)2370
E.g. from the last work

$$
m(Q Q \bar{q} \bar{q})-m(Q Q q) \simeq m(\bar{Q} \bar{q} \bar{q})-m(\bar{Q} q)
$$

exploiting heavy quark-diquark symmetry:
expansion in $r_{Q Q} / r_{q} \sim \Lambda_{Q C D} /\left(M_{Q} v\right)$
One finds: The heavier $Q Q$, the more deeply bound $Q Q \bar{q} \bar{q}$
cc: From mass of $\Sigma_{c c}$ : At most very shallow State found ( $T_{c c}$ ) - consistent with molecule
$b b$ : No bb-baryon mass available; all groups agree that there should be a tetraquark structure

## OTHER CHANNELS

L. von Detten, V. Baru, CH, Q. Wang, D. Winney, Q. Zhao; arxiv: 2402.03057


