Gamma spectroscopy with AGATA: New insights in nuclear excitations along the nuclear chart

- γ-ray tracking
- Physics campaigns
- High energy γ rays & E1 strength
- Isospin symmetrie
- Lifetime measurements
- Outlook

Peter Reiter

Institute of Nuclear Physics, University of Cologne

DPG Spring Meeting 2024 Justus-Liebig-Universität Gießen

Advanced GAmma Tracking Array

13 Countries, 41 Institutions

180 hexagonal HPGe cryst	tals <u>3 shapes</u>
36-fold segmentation	6480 segments
60 triple-clusters	
Solid angle coverage	82 %
Inner radius (Ge)	23.5 cm
Efficiency: 43%	Peak/Total: 58%

AGATA Triple Cryostat

- integration of 111 high resolution spectroscopy channels
- 23 AGATA triple cryostats assembled at IKP, Cologne

- A. Wiens et al. NIM A 618 (2010) 223–233
- J. Eberth et al. EPJ A 59 (2023) 179

Ingredients of γ-ray tracking

Result of AGATA tracking

Reconstructed initial gamma rays with: - gamma ray energy

- 1st interaction position \rightarrow Doppler correction
- 2nd interaction position \rightarrow Polarization
- position resolution < 4 mm FWHM

1st interaction positions after PSA and Tracking

The AGATA journey...

Physics case of AGATA

White book: Physics opportunities with the Advanced Gamma Tracking Array: AGATA

TRACKING ARRAY

Low energy tail of E1 and E2 response

AGATA + Δ E-E Si telescope @ LNL

isoscalar hadronic probe: (¹⁷O, ¹⁷O'γ) targets: ⁹⁰Zr, ¹²⁴Sn, ¹⁴⁰Ce, ²⁰⁸Pb

investigation of Pygmy dipole resonance structural splitting of low-lying *E*1 strength

comparison α scattering (α , $\alpha'\gamma$), photon scattering (γ , γ')

Escape lines are identified and discriminated by γ-ray tracking

First interaction points yield angular distributions:

- E1 transition from the 1⁻ state at 5.512 MeV
- E2 transition from the 2⁺ state at 6.194 MeV

F. Crespi, A. Bracco et al., Phys. Rev. Lett. 113,012501 (2014)

Structure of the Pygmy Dipole Resonance

Isospin dependence of transition strengths

FRS-AGATA-LYCCA setup @ GSI primary ⁵⁸Ni beam, 600 MeV/A three secondary beams ⁴⁶Cr, ⁴⁶V and ⁴⁶Ti beam energies: 180, 176 and 178 MeV/A

> Two different methods for $0^+_{q.s.} \rightarrow 2^+_1 B(E2)$ strength (i) Relativistic Coulomb excitation (Au target 500 mg/cm², $v/c \approx 0.53$)

A. Boso, et al., Phys. Lett. B 797 (2019) 134835.

Isospin dependence of transition strengths

Two different methods for $0^+_{g.s.} \rightarrow 2^+_1 B(E2)$ strength (ii) Differential three foil plunger Au (750 +500 +500) mg/cm² line shape with three peaks v/c = 0.527, 0.509, 0.488

Cologne Compact Differential Plunger M. Beckers, et al., NIM A 1042 (2022) 167418

Isospin dependence of transition strengths

Isospin dependence of the proton matrix element $M_p(T_z)$ for electromagnetic transitions of T=1 triplet:

 $M_p(T_z) = 1 + \frac{1}{2} [M_0 - T_z M_1^{T_z=1}]$ $M_0 \quad \text{isoscalar matrix element 62.2(15) efm}^2,$ $M_1^{T_z=1} \quad \text{isovector matrix element 0.0(15) efm}^2.$

In the limit of pure isospin, the analogue proton matrix elements should be exactly linear with T_z .

A. Boso, et al., Phys. Lett. B 797 (2019) 134835.

The GANIL Campaign [2015-2021]

45 AGATA detectors on-line Coupled to VAMOS spectrometer E. Clément et al.; NIM A 855, 1-12 (2017)

J. Dudouet, et al.; Phys. Rev. Lett. 118, 162501 (2017)
C Delafosse, et al.; Phys. Rev. Lett. 121, 192502 (2018)
D. Ralet, et al.; Phys. Lett. B 797, (2019) 134797
B. Cederwall, et al.; Phys. Rev. Lett. 124, 062501 (2020)
M. Siciliano, et al.; Phys. Lett. B 806 (2020) 135474
R. M. Pérez-Vidal, et al.; Phys. Rev. Lett. 129, 112501 (2022)
I. Zanon, et al.; Phys. Rev. Lett. 131, 262501 (2023)
Ch. Fougères, et al.; Nature Communications (2023) 14:4536

High-Precision Spectroscopy of ²⁰O

- SPIRAL1 accelerator @ GANIL
- Radioactive ¹⁹O beam, 8 MeV/A, 4x10⁵ pps
- Target CD₂ 0.3 mg/cm² (+ Au 24.4 mg/cm²)
- ¹⁹O(d,p)²⁰O direct reaction, inverse kinematics
- AGATA + MUGAST + VAMOS.

Efficiency, energy resolution, position resolution, Doppler correction capability → Doppler shift attenuation method

High-Precision Spectroscopy of ²⁰O

Chiral Effective Field Theory Position of the drip line of oxygen isotopic chain is reproduced by introducing **3N forces.**

K. Hebeler, J.D. Holt, J. Menendez, A. Schwenk Annu. Rev. Nucl. Part. Sci. (2015) 65:457-484

B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)

N3LO_{Inl}

V. Soma, et al. Phys. Rev. C 101, 014318 (2020)

1.8/2.0(EM)

K. Hebeler, et al. Phys. Rev. C 83, 031301(R) (2011) J. Simonis, et al. Phys. Rev. C 96, 014303 (2017)

N2LO_{GO}

W. G. Jiang, et al. Phys. Rev. C 102, 054301 (2020).

ADVANCED GAMMA TRACKING ARRAY

Measuring femtosecond nuclear lifetimes

Chloé Fougères, et al.; Nature Communications | (2023) 14:4536

Measuring femtosecond nuclear lifetimes

Counts

Novel method: velocity difference $\Delta\beta$

 β_{reac} velocity at time of the reaction from ^4He ejectile β_{ems} velocity at time of $\gamma\text{-ray}$ emission

Deceleration of ²³Mg ions is for short lifetimes ($\tau \leq 100$ fs) almost constant (dE/dx \approx constant), $\Delta\beta \propto \Delta t$, right side tail of the curves follows exponential decay function

Chloé Fougères, et al.; Nature Communications | (2023) 14:4536

Measuring femtosecond nuclear lifetimes

Lifetime of astrophysical state at 7.333MeV: $\tau = 11^{+7}_{-5}$ fs

reduced magnetic dipole transition probability: B(M1) = $0.017^{+0.011}_{-0.008} \mu_N^2$

Proton branching ratio: BRp = 0.68(17)%

Resonance strength: $\omega \gamma = 0.24^{+0.11}_{-0.04}$ meV

Nova models:

Temperature $T_{base} \sim 5 \times 10^7$ K, reaction chain: ${}^{20}Ne(p, \gamma){}^{21}Na(\beta+){}^{21}Ne(p, \gamma){}^{22}Na$ rapid rise in the ${}^{22}Na$ abundance. higher temperature $T_{base} \sim 5 \times 10^8$ K, reaction ${}^{22}Na(p, \gamma){}^{23}Mg$ destruction of ${}^{22}Na$

- Predictions of the 1.275 MeV $\gamma\text{-ray}$ flux emitted from a nova.
- Estimates of the maximum detectability distance of novae in γ rays, via 1.275 MeV line.
- Expected sensitivities of e-ASTROGRAM (3 × 10^{-6} photons cm⁻² s⁻¹) and COSI (1.7×10^{-6} photons cm⁻² s⁻¹)

Chloé Fougères, et al.; Nature Communications | (2023) 14:4536

LISA: LIfetime measurements with Solid Active targets

- Energy resolution determined by unknown velocity in the target
- Several layers of active targets
- Event-by-event determination of reaction position \rightarrow (β ,z)

- Evolution of collectivity in Islands of Inversion
- Fate of the N=82 and 126 shell closures
- And many more

Courtesy K. Wimmer, GSI

erc

European Research Counci Established by the European Commission

Compact array of active target detectors inside AGATA

Gamma-Ray Energy Tracking Arrays

- 120 Ge crystals
- 30 Quad "modules"
- main user FRIB
- final completion 2025

- 180 Ge crystals
- 60 Triple "clusters"
- MoU Phase 2
- 45 Triple "clusters"
- 3π completion 2032

Summary

• Status AGATA

- \checkmark > 60 detectors, digital electronics, PSA, γ -ray tracking
- ✓ position sensitivity (E,x,y,z,t) Δ E, Δ x, Δ t
- Major improvements for in-beam γ -ray spectroscopy
- Ongoing AGATA campaigns continuously produce excellent physics results
- **Promising perspectives** for future experiments with RIBs at FAIR, SPES, SPIRAL2, ...
- New MoU to complete the 3π AGATA configuration
- Topical Collection on AGATA, EPJ A special issue (2024) A.Bracco, G.Duchêne, Zs.Podolyák, PR, Prog. Part. Nucl. Phys. 121 (2021) 103887

