The muon g - 2 and the role of hadron physics

Hartmut Wittig

Institute for Nuclear Physics, Helmholtz Institute Mainz, and PRISMA⁺ Cluster of Excellence, Johannes Gutenberg-Universität Mainz

DPG Spring Meeting, Justus Liebig University Gießen 14 March 2024

JOHANNES GUTENBERG **UNIVERSITÄT** MAINZ

ISSENSCHAFT

Braut sich da was zusammen? Im Sommer 2013 wurde der Myonen-Speicherring (auf dem Lastwagen) am Fermilab nahe Chicago angeliefert. Jetzt wurden erste Ergebnisse verkündet.

Die Macht der Myoner

Ein Teilchen schickt sich an, eine beispiellos erfolgreiche Theorie zu sp Viele Physiker freuen sich wie Bolle. Andere warnen, dazu sei es noch z

Von Ulf von Rauchhaupt

FRANKFURTER ALLGEMEINE SONNTAGSZEITUNG

11. APRIL 2021 NR. 14 SEITE 57

nasse Füsse het 26 auch Hals

Motivation: The Dark Matter Puzzle

Standard Model of Particle Physics:

- Quantitative framework for description of known constituents of visible matter
- No Dark Matter candidate among SM particles
- No explanation for baryon asymmetry in universe

Astrophysical observations:

- Dark Matter dominates matter density of universe
- No clues on nature of Dark Matter from laboratory experiments

Standard Model does not provide a complete description of Nature

The Quest for New Physics

Energy Frontier

New particles and interactions at colliders

Enhancement of rare phenomena

Hartmut Wittig

Precision Frontier

Comparison of precision observables to Standard Model prediction

The anomalous magnetic moment of the muon

Magnetic moment of particle with mass *m* and charge *e* :

Quantum corrections modify Dirac's prediction g = 2g = 2(1 + a), a: anomalous magnetic moment

Hartmut Wittig

The anomalous magnetic moment of the muon

Magnetic moment of particle with mass m and charge e:

Quantum corrections modify Dirac's prediction g = 2g = 2(1 + a), a: anomalous magnetic moment

Electromagnetic, weak and strong interactions contribute to *a*

The anomalous magnetic moment of the muon

Magnetic moment of particle with mass m and charge e:

Quantum corrections modify Dirac's prediction g = 2g = 2(1 + a), a: anomalous magnetic moment Beyond leading order: distinct values of a_e , a_μ and a_τ

Muon g - 2 Theory Initiative

Founded in 2017 Agree on common SM prediction Focus on hadronic contributions Prospects for increased precision

Hartmut Wittig

Hadronic vacuum polarisation (HVP)

[Aoyama et al., Phys. Rep. 887 (2020) 1, arXiv:2006.04822]

$\log 2$	[2020 White F	'ape
$34718.9(1) \times 10^{-11}$	0.001 ppm	
$153.6(1.0) \times 10^{-11}$	0.01 ppm	
$6845(40) \times 10^{-11}$	0.34 ppm [0	.6%]
$92(18) \times 10^{-11}$	0.15 ppm [2	0%]
$1810(43) \times 10^{-11}$	0.37 ppm	

Hadronic light-by-light scattering (HLbL)

Standard Model prediction for muQED:116 58Weak:116 58Hadronic vacuum polarisation:116 58Hadronic light-by-light scattering:116 59
$$a_{\mu}^{SM} = a_{\mu}^{QED} + a_{\mu}^{weak} + a_{\mu}^{hvp} + a_{\mu}^{hlbl} = 116 59$$

- QED and electroweak contributions account for 99.994% of the SM prediction for a_{μ}
- Error is dominated by strong interaction effe

[2020 Wh	ite Pape
0.001 ppm	
0.01 ppm	
0.34 ppm	[0.6%]
0.15 ppm	[20%]
0.37 ppm	
QED+	-EW
HLbL	HVP
	[2020 Whi 0.001 ppm 0.01 ppm 0.34 ppm 0.15 ppm QED+ HLbL

Standard Model prediction for muon
$$g - 2$$

QED: 116 584 718.9 (1)
Weak: 153.6(1.0)
Hadronic vacuum polarisation: 6845(40) ×
Hadronic light-by-light scattering: 92(18) ×
 $a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{hvp}} + a_{\mu}^{\text{hlbl}} = 116 591 810(43) ×$
Standard Model vs. experiment: $a_{\mu}^{\text{exp}} \stackrel{?}{=} a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} +$
Why the muon?
 $a_{\ell}^{\text{BSM}} \propto m_{\ell}^2/M_{\text{BSM}}^2$ $\ell = e, \mu, \tau$
 \rightarrow sensitivity of a_{μ} enhanced by $(m_{\mu}/m_e)^2 \approx 4.3$

liction for muon $g-2$		[2020 White Paper		
116	$5584718.9(1) \times 10^{-11}$	0.001 ppm		
	$153.6(1.0) \times 10^{-11}$	0.01 ppm		
tion:	$6845(40) \times 10^{-11}$	0.34 ppm	[0.6%]	
ttering:	$92(18) \times 10^{-11}$	0.15 ppm	[20%]	
$+ a_{\mu}^{\text{hlbl}} = 116$	$591810(43) \times 10^{-11}$	0.37 ppm	\sim	
ent: $a_{\mu}^{\exp} \stackrel{?}{=} a_{\mu}^{\exp}$	$a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{hvp}} + a_{\mu}^{\text{hlbl}}$	$+ a_{\mu}^{BSM}$		
$c m^2 / M^2$	$l - a + \tau$	ļ	l	

 $= e, \mu, \tau$

 $(m_{\mu}/m_e)^2 \approx 4.3 \times 10^4$ relative to a_e

Hartmut Wittig

New Physics on the horizon?

Confronting the SM prediction with the E989 measurement

 $a_{\mu}^{\exp} = 116592049(22) \times 10^{-11}$ [0.19 ppm]

 $a_{\mu}^{\rm SM} = 116\,591\,810(43) \times 10^{-11}$ [0.37 ppm]

 $\Rightarrow a_{\mu}^{\exp} - a_{\mu}^{SM} = (249 \pm 48) \cdot 10^{-11} \quad [5.1\sigma]$

Standard Model prediction:

- dispersion integrals and hadronic cross sections
- Lattice QCD result for HVP with comparable precision [Borsányi et al., Nature 593 (2021) 7857]

 $a_{\mu}^{\exp} - a_{\mu}^{SM} \Big|_{BMWc}^{hvp, LO} = (105 \pm 61) \cdot 10^{-11} \quad [1.7 \sigma]$

• White paper estimate based on "data-driven" evaluation of (leading-order) HVP contribution:

New Physics on the horizon?

Confronting the SM prediction with the E989 measurement

 $a_{\mu}^{\exp} = 116\,592\,049(22) \times 10^{-11}$ [0.19 ppm]

 $a_{\mu}^{\rm SM} = 116\,591\,810(43) \times 10^{-11}$ [0.37 ppm]

 $\Rightarrow a_{\mu}^{\exp} - a_{\mu}^{SM} = (249 \pm 48) \cdot 10^{-11} \quad [5.1\sigma]$

Standard Model prediction:

- dispersion integrals and hadronic cross sections
- Lattice QCD result for HVP with comparable precision [Borsányi et al., Nature 593 (2021) 7857]

 $a_{\mu}^{\exp} - a_{\mu}^{SM} \Big|_{BMWc}^{hvp, LO} = (105 \pm 61) \cdot 10^{-11} \quad [1.7 \sigma]$

• White paper estimate based on "data-driven" evaluation of (leading-order) HVP contribution:

Requires independent confirmation

Hadronic light-by-light scattering

 a_{μ}^{hlbl} : Uncontroversial — contributes 0.15 ppm to the total SM uncertainty of 0.37 ppm

 \rightarrow Focus on refinements and further reduction of uncertainty

Hadronic models

Hadronic models, data-driven method and Lattice QCD produce compatible results White paper recommended value: $a_{\mu}^{\text{hlbl}} = (92 \pm 18) \cdot 10^{-11}$ **Recent lattice calculations:**

 $a_{\mu}^{\text{hlbl, LO}} = \begin{cases} (109.6 \pm 14.7) \cdot 10^{-11} & \text{Mainz/CLS} \\ (124.7 \pm 15.2) \cdot 10^{-11} & \text{RBC} \end{cases}$

[Chao et al., EPJC 81 (2021) 651; EPJC 82 (2022) 664; Blum et al., arXiv:2304.04423]

Hadronic vacuum polarisation from dispersion theory

Analyticity, unitarity & optical theorem imply:

$$m = \int \frac{ds}{\pi(s-q^2)} \operatorname{Im} m$$

$$a_{\mu}^{\text{hvp,LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \, \frac{R_{\text{had}}(s)\hat{K}(s)}{s^2}, \quad R_{\text{h}}$$

Hadronic effects cannot be treated in perturbation theory

- Use experimental data for $R_{had}(s)$ in the low-energy regime ("data-driven approach") Standard Model prediction is subject to experimental uncertainties

Decade-long effort to measure e^+e^- cross sections

 $\sqrt{s} \leq 2 \,\text{GeV}$: sum of exclusive channels $\sqrt{s} > 2 \text{ GeV}$: inclusive channels, narrow resonances, perturbative QCD

 $a_{\mu}^{\text{hvp, LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m^2_{-}}^{\infty} ds \, \frac{R_{\text{had}}(s)\tilde{K}(s)}{s^2}$

 $\sqrt{s} \leq 2 \,\text{GeV}$: sum of exclusive channels

Hartmut Wittig

$$a_{\mu}^{\text{hvp, LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}}^{\infty} ds \, \frac{R_{\text{had}}(s)\hat{K}(s)}{s^2}$$

Decade-long effort to measure e^+e^- cross sections

 $\sqrt{s} \leq 2 \,\text{GeV}$: sum of exclusive channels $\sqrt{s} > 2 \text{ GeV}$: inclusive channels, narrow resonances, perturbative QCD

• White Paper recommended value (2020): $a_{\mu}^{\text{hvp, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{syst}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$ $= 693.1(4.0) \times 10^{-10}$ [0.6%]

(accounts for tensions in the data and differences between analyses)

• Recent results in the $\pi^+\pi^-$ channel by CMD-3: \rightarrow further tension among e^+e^- data

 $a_{\mu}^{\text{hvp, LO}} = 707.6(3.4)_{\text{exp}}(0.7)_{\text{DV+QCD}} \times 10^{-10}$

(my own estimate)

 $a_{\mu}^{\text{hvp, LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m^2}^{\infty} ds \, \frac{R_{\text{had}}(s)K(s)}{s^2}$

[Ignatov et al. (CMD-3 Collab.), arXiv:2302.08834]

Lattice under Chromodynamics (QCD)

 Gauge theory of the strong interaction Non-perturbativaitreatenentoffotreageinteractiongivia regularised Euclidean path i

Lat**tiettisp** AGA: $a, x_{\mu} = n_{\mu}a, a^{-1} = \Lambda_{UV}$ • Ab initio treatment on discretised space-time Expectation value. v_{q} be v_{q} Monte $C_{q} v_{\mu}$ v_{μ} $v_$

Challenges for Lattice QCD calculations

Procedure: Noise problem: exponential growth of statistical fluctuations

- Bias from unsuppressed excited-state contributions
- Choose discretisation of OCD action Extrapolation to continuum limit: $a \rightarrow 0$
- Evaluate $\langle \Omega \rangle$ via Monte Carlo Integration:

generate ensembles of gauge configurations via a iviarkov chain

- Statistical error: $\sqrt{\Omega^2 \overline{\Omega}^2} \propto 1/N_{cfo}^{1/2}$ • Ensemble average: $\langle \Omega \rangle \simeq \Omega$

• Extrapolate observables to the continuum limit: $a \rightarrow 0$ and tune quark masses to physical values

Hadronic vacuum polarisation from Lattice QCD

Lattice QCD does NOT determine the *R*-ratio from first principles Time-momentum representation (TMR): [Bernecker & Meyer EPJA 47 (2011) 148]

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \,\tilde{K}(t) \,G(t), \quad G(t) = -a^3 \sum_{\vec{x}} \left\langle J_k^{\text{e.m.}}(\vec{x},t) J_k^{\text{e.m.}}(0) \right\rangle$$

- Not sensitive to exclusive hadronic channels

Challenges

- Exponentially increasing statistical noise as $t \rightarrow \infty$
- Correct for finite-volume effects
- Control discretisation effects ("lattice artefacts")
- Include isospin-breaking corrections

 $(\underline{K}(t):$ known analytically)

• No reliance on experimental data, except for simple input quantities \rightarrow scale setting, calibration

Hadronic vacuum polarisation from Lattice QCD

Lattice QCD does NOT determine the *R*-ratio from first principles Time-momentum representation (TMR): [Bernecker & Meyer EPJA 47 (2011) 148]

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha}{\pi}\right)^2 \int_0^\infty dt \,\tilde{K}(t) \,G(t), \quad G(t) = -a^3 \sum_{\vec{x}} \left\langle J_k^{\text{e.m.}}(\vec{x}, t) J_k^{\text{e.m.}}(0) \right\rangle \qquad (\tilde{K}(t): \text{ known analytically})$$

- Not sensitive to exclusive hadronic channels

Challenges

- Exponentially increasing statistical noise as $t \rightarrow \infty$
- Correct for finite-volume effects
- Control discretisation effects ("lattice artefacts")
- Include isospin-breaking corrections

Light-quark connected contribution dominates

• No reliance on experimental data, except for simple input quantities \rightarrow scale setting, calibration

 $\sim \sim \sim$

 \sim

Controlling the long-distance tail of G(t)

- Long-distance tail of the light quark contribution to G(t): limiting factor for overall statistical precision
- Correlator dominated by isovector two-pion contribution

Strategies:

• Dedicated calculations of the spectrum in isovector channel and/or pion form factor $F_{\pi}(\omega)$

- Noise-reduction methods: AMA, LMA, truncated solver
- Machine Learning

Common discretisations of the quark action

Computational cost depends significantly on the chosen discretisation

"Fermion doubling problem"

Domain wall /overlap quarks:

- no doublers; chiral symmetry breaking exponentially small
- live in five dimensions (dwf)
- evaluate sign function of "conventional" action (ovlp)
- used by: RBC/UKQCD, χ QCD,...

Wilson quarks:

- no doublers; chiral symmetry broken explicitly
- "exceptional configurations":
 - negative eigenvalues of Wilson-Dirac operator
 - used by: Mainz/CLS, ETM, PACS

HVP in Lattice QCD

White Paper:

 $a_{\mu}^{\text{hvp,LO}} = (693.1 \pm 4.0) \cdot 10^{-10}$ *R*-ratio: [0.6%] LQCD: $a_u^{\text{hvp, LO}} = (711.6 \pm 18.4) \cdot 10^{-10}$ [2.6%] RBC/UKQCD [Blum et al., Phys. Rev. Lett. 121 (2018) 022003]

- Domain wall fermions
- Two ensembles: a = 0.114, 0.084 fm at m_{π}^{phys}
- Leading isospin-breaking corrections included
- Naive continuum extrapol'n in a^2 including estimated a^4 -term

 $a_{\mu}^{\text{hvp,LO}} = (715.4 \pm 16.3 \pm 9.2) \cdot 10^{-10}$ [2.6%]

HVP in Lattice QCD

White Paper:

 $a_{...}^{\text{hvp, LO}} = (693.1 \pm 4.0) \cdot 10^{-10}$ *R*-ratio: [0.6%] LQCD: $a_u^{\text{hvp, LO}} = (711.6 \pm 18.4) \cdot 10^{-10}$ [2.6%] Mainz/CLS [Gérardin et al., Phys. Rev. D 100 (2019) 014510]

- O(*a*) improved Wilson fermions
- Four lattice spacings: $a = 0.085 0.050 \,\mathrm{fm}$
- Pion masses $m_{\pi} = 130 420 \,\mathrm{MeV}$
- Isospin-breaking correction by ETMC added to error
- Simultaneous chiral and continuum extrapolation

 $a_{\mu}^{\text{hvp,LO}} = (720.0 \pm 12.6 \pm 9.9) \cdot 10^{-10}$ [2.2%]

HVP in Lattice QCD

White Paper:

R-ratio: $a_{\mu}^{\text{hvp, LO}} = (693.1 \pm 4.0) \cdot 10^{-10}$ [0.6%] LQCD: $a_{\mu}^{\text{hvp, LO}} = (711.6 \pm 18.4) \cdot 10^{-10}$ [2.6%]

BMWC [Borsányi et al., Nature 593 (2021) 7857]

- Rooted staggered fermions
- Six lattice spacings: a = 0.132 0.064 fm
- Physical pion mass throughout
- Correct for taste-breaking before continuum extrapol'n
- Final result selected from distribution of different fits

Window observables

 $a_{\mu}^{\text{hvp, win}} = \left(\frac{\alpha}{\pi}\right)^2 \int_{0}^{\infty} dt \,\tilde{K}(t) \,G(t) \,W(t; t_0, t_1)$ **Idea:** restrict integration to "unproblematic" regions → reduce statistical fluctuations and systematic effects 0.5Intermediate-distance window: statistical noise 0.4finite-volume effects $W^{\text{ID}}(t; t_0, t_1) = \Theta(t, t_0, \Delta) - \Theta(t, t_1, \Delta)$ 0.3 $\Theta(t, t', \Delta) = \frac{1}{2} \left[1 + \tanh(t - t') / \Delta \right]$ 0.2 $t_0 = 0.4 \,\text{fm}, t_1 = 1.0 \,\text{fm}, \Delta = 0.15 \,\text{fm}$

Data-driven approach: $a_{\mu}^{\text{win}} = (229.4 \pm 1.4) \cdot 10^{-10}$ [Colangelo et al., Phys Lett B833 (2022) 137313]

[Blum et al., Phys. Rev. Lett. 121 (2018) 022003]

- Finite-volume correction reduced to 0.25%
- Uncertainty dominated by statistics

Benchmark quantity for sub-contribution of HVP \rightarrow

(Excluding the 2023 CMD-3 result for $e^+e^- \rightarrow \pi^+\pi^-$)

Intermediate window observable in Lattice QCD

BMWc: Rooted staggered quarks

 $a_{\mu}^{\text{win,ud}} = (207.3 \pm 0.4 \pm 1.3)^{(1000)} \cdot 10^{-10}$

[Borsányi et al., Nature 593 (2021) 7857]

Mainz/CLS: O(a) improved Wilson quarks

- Extension to six lattice spacings: $a = 0.099 - 0.035 \,\mathrm{fm}$
- Pion masses $m_{\pi} = 130 420 \,\mathrm{MeV}$
- Two discretisations of the vector current: local and conserved
- Simultaneous chiral and continuum extrapolation
- Isospin-breaking correction included

light]₀

Intermediate window observable in Lattice QCD

BMWc: Rooted staggered quarks

 $a_{\mu}^{\text{win,ud}} = (207.3 \pm 0.4 \pm 1.3^{\text{(jight)}_{\text{ise}}} \cdot 10^{-10}$

[Borsányi et al., Nature 593 (2021) 7857]

Mainz/CLS: O(a) improved Wilson quarks

 $a_{\mu}^{\text{win,ud}} = (207.0 \pm 0.8 \pm 1.2) \cdot 10^{-10}$

[Cè et al., Phys Rev D106 (2022) 114502]

Window observable: Lattice QCD vs. *R*-ratio

Left: dominant light-quark contribution to a_{μ}^{win} Right: including sub-leading contributions

Window observable: Lattice QCD vs. *R*-ratio

• Tension of 3.8σ in the window observable evaluated from e^+e^- data* and four lattice calculations $= (6.8 \pm 1.8) \cdot 10^{-10}$ [3.8 σ]

$$a_{\mu}^{\mathrm{win}}\Big|_{\langle \mathrm{lat} \rangle} - a_{\mu}^{\mathrm{win}}\Big|_{e^+e^-} =$$

• Subtract *R*-ratio result $a_{\mu}^{\text{win}}|_{e^+e^-}$ from WP estimate and replace by lattice average $a_{\mu}^{\text{win}}|_{\langle \text{lat} \rangle}$:

 $a_{\mu}^{\exp} - a_{\mu}^{SM} \Big|_{e^+e^- \to \langle lat \rangle}^{\text{win}} = (18.1 \pm 4.8) \cdot 10^{-10} \quad [3.8 \,\sigma]$

*excluding the CMD-3 result

- Dominant light-quark contribution confirmed for wide range of discretisation with sub-percent precision
- Significant tension with results based on the *R*-ratio*
 - $a_{\mu}^{\rm win} = (229.4 \pm 1.4) \cdot 10^{-10}$ *R*-ratio estimate: $a_{\mu}^{\text{win}} = (236.16 \pm 1.09) \cdot 10^{-10}$ Lattice average:
 - (RBC/UKQCD 23, ETMC 22, Mainz/CLS 22, BMW 20) [HW, arXiv:2306.04165]

What can we learn from a_{μ}^{win} ?

Primary observable in lattice calculations: vector correlator G(t)

$$G(t) \equiv -\frac{a^3}{3} \sum_{k} \sum_{\vec{x}} \left\langle j_k^{\text{em}}(\vec{x}, t) j_k^{\text{em}}(0) \right\rangle = \frac{1}{12\pi^2} \int_{m_{\pi^0}^2}^{\infty} d(\sqrt{s}) R(s)^{\text{lat}} s \, e^{-\sqrt{s}t}$$
$$a_{\mu}^{\text{win}} \Big|_{\text{lat}} > \left. a_{\mu}^{\text{win}} \right|_{e^+e^-} \text{ implies that } R(s)^{\text{lat}} > R(s)^{e^+e^-} \text{ in some interval of } \sqrt{s}$$

Energy interval $600 \le \sqrt{s} \le 900 \,\text{MeV}$ contributes the same fraction to a_{μ}^{hvp} and a_{μ}^{win}

\sqrt{s} interval	$a_{\mu}^{ m hvp}$	$(a_{\mu}^{\mathrm{hvp}})^{\mathrm{SD}}$	$(a_{\mu}^{\mathrm{hvp}})^{\mathrm{ID}}$	$(a_{\mu}^{\mathrm{hvp}})^{\mathrm{LD}}$	$\bar{\Pi}(1 \text{ GeV}^2)$
Below 0.6 GeV	15.5	1.5	5.5	23.5	8.2
0.6 to 0.9 GeV	58.3	23.1	54.9	65.4	52.6
Above 0.9 GeV	26.2	75.4	39.6	11.1	39.2
Total	100.0	100.0	100.0	100.0	100.0

21

[Cè et al., Phys Rev D106 (2022) 114502]

What can we learn from a_{μ}^{win} ?

• Phenomenological model for *R*-ratio predicts

 $\sqrt{s} = 600 - 900 \text{ MeV}$: $\frac{R(s)^{\text{lat}}}{R(s)^{e^+e^-}} = 1 + 1$

- Lattice average vs. *R*-ratio: $(a_{\mu}^{\text{win}})^{\text{lat}}/(a_{\mu}^{\text{win}})^{e^+e^-} = 1.030(8)$ \Rightarrow $R(s)^{\text{lat}}$ is enhanced by 5% relative to $R(s)^{e^+e^-}$ for $\sqrt{s} = 600 - 900 \text{ MeV}$
- If confirmed, it would imply that BMW's estimate might be too low....

Similar conclusions

- Dispersive treatment of pion form factor
- "Energy-smeared" *R*-ratio from lattice data

[Mainz/CLS, Cè et al., Phys Rev D 106 (2022) 114502]

$$\epsilon \implies \frac{(a_{\mu}^{\text{hvp}})^{\text{lat}}}{(a_{\mu}^{\text{hvp}})^{e^+e^-}} \approx \frac{(a_{\mu}^{\text{win}})^{\text{lat}}}{(a_{\mu}^{\text{win}})^{e^+e^-}} = 1 + 0.6\epsilon$$

[Colangelo, Hoferichter, Stoffer, PLB 814 (2021) 136073] [ETMC, Alexandrou et al., PRL 130 (2023) 241901]

More windows....

Short-distance window:

- Finite-volume correction negligible
- Uncertainty dominated by control over lattice artefacts

 $(a_{\mu}^{\text{win}})^{\text{SD}} = (68.85 \pm 0.15 \pm 0.42) \times 10^{-10}$

Hadronic model:

- 5% enhancement of $R(s)^{\text{lat}}$ for $0.6 \text{ GeV} \le \sqrt{s} \le 0.9 \text{ GeV}$ increases $(a_{\mu}^{\text{win}})^{\text{SD}}$ by $+1 \times 10^{-10}$
- Expectation confirmed by lattice calculations

Hadronic running of electromagnetic coupling

Electromagnetic coupling is energy-dependent:

 $\alpha^{-1} = 137.035999...$ $\alpha(q^2) = \frac{\alpha}{1 - \Delta \alpha(q^2)}$ $\alpha^{-1}(M_Z^2) = 127.951 \pm 0.009$

Correlation between $a_{\mu}^{\rm hvp}$ and the hadronic running of $\Delta \alpha_{\rm had}$:

$$\Delta \alpha_{\text{had}}(q^2) = -\frac{\alpha q^2}{3\pi} \mathcal{J}_{m_{\pi^0}^2}^{\infty} ds \frac{R(s)}{s(s-q^2)},$$

Euclidean momenta

 $\Delta \alpha_{had}(-Q^2)$ accessible in lattice QCD via the same correlator G(t) with a different kernel function: ∞

$$\Delta \alpha_{\rm had}(-Q^2) = \frac{\alpha}{\pi} \frac{1}{Q^2} \int_0^\infty$$

Hadronic running at Z-pole: $\Delta \alpha_{had}^{(5)}(M_Z^2) \rightarrow key quantity in global electroweak fit$

$$a_{\mu}^{\text{hvp}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \, \frac{R(s) \, \hat{K}(s)}{s^2}$$

$$dt G(t) \left[Q^2 t^2 - 4 \sin^2 \left(\frac{1}{2} Q^2 t^2 \right) \right]$$

Evaluation of $\Delta \alpha_{had}^{(5)}(M_Z^2)$ and comparison with EW precision data

Adler function approach, aka. "Euclidean split technique"

 $\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \Delta \alpha_{\rm had}^{(5)}(-Q_0^2) \quad \leftarrow \text{ lattice QCD}$

$$+[\Delta \alpha_{\rm had}^{(5)}(-M_Z^2) - \Delta \alpha_{\rm had}^{(5)}(-Q_0^2)]$$

 $+ [\Delta \alpha_{\text{had}}^{(5)}(M_Z^2) - \Delta \alpha_{\text{had}}^{(5)}(-M_Z^2)] \quad \leftarrow \text{ pQCD}$

- $\binom{2}{0} \leftarrow \text{perturbative Adler function}$

Evaluation of $\Delta \alpha_{had}^{(5)}(M_Z^2)$ and comparison with EW precision data

Adler function approach, aka. "Euclidean split t

$$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) = \Delta \alpha_{\rm had}^{(5)}(-Q_0^2)$$

$$+[\Delta \alpha_{\rm had}^{(5)}(-M_Z^2) - \Delta \alpha_{\rm had}^{(5)}(-Q_0^2)]$$

$$+[\Delta \alpha_{\rm had}^{(5)}(M_Z^2) - \Delta \alpha_{\rm had}^{(5)}(-M_Z^2)$$

 $\Rightarrow \quad \Delta \alpha_{\text{had}}^{(5)}(M_Z^2) = 0.02773(9)_{\text{lat}}(2)_{\text{btm}}(12)_{\text{pQCE}}$

[Mainz/CLS, Cè et al., JHEP 08 (2022) 220, arXiv:2203.

No inconsistency with global electroweak fit

Standard Model can accommodate a larger value for a_{μ} without contradicting electroweak precision data

technique"	lat. + pQCD'[Adler]
	lat. + KNT18[data]
	R-ratio
	KNT18/19
)]	DHMZ19 HOH
	Jegerlehner 19
	EW global fits
	Gfitter 18
	Crivellin <i>et al.</i> 20
	Keshavarzi <i>et al.</i> 20
	Malaescu, Schott 20
.08676]	HEPfit 21
0	0255 0.0260 0.0265 0.0270 0.0275 0.0280 0.0285 0.029
t!	$\Delta lpha_{ m had}^{(5)}(M_Z^2)$

Summary and outlook

Hadron physics holds the key in the quest for new physics via $(g - 2)_{\mu}$ No straightforward interpretation of the Fermilab E989 experiment Discrepant determinations of the HVP contribution:

- Tensions between lattice QCD and e^+e^- hadronic cross sections*
- Tension in $\pi^+\pi^-$ channel between BaBar vs. KLOE and CMD-3 vs. all other results

Analyses / re-analyses of e^+e^- data in progress: BaBar, BESIII, CMD-3, KLOE Experimental measurement of the HVP contribution by MUonE experiment Fermilab E989 to analyse data from Runs 4–6 Update of White Paper expected by \approx Dec 2024

*pre-2023

- Lattice QCD to produce more results for HVP contribution with sub-percent precision

i ci cu bation theory not applicable at low chergies

Lattice QCD

- *itio* treatment on discretised space-time
 - pute observables via Monte Carlo integration

hallenges for Lattice QCD calculations

- oise problem: exponential growth of statistical fluctuations
- Bias from unsuppressed excited-state contributions
- Extrapolation to continuum limit: $a \rightarrow 0$

It's not magnitude that matters but significance!

Thank you!

Hartmut Wittig

QED contributions to a_{μ}

QED contribution has been worked out to in perturbation theory to 5-loop order:

PRL 109, 111808 (2012)

PHYSICAL REVIEW LETTERS

Complete Tenth-Order QED Contribution to the Muon g - 2

Tatsumi Aoyama,^{1,2} Masashi Hayakawa,^{3,2} Toichiro Kinoshita,^{4,2} and Makiko Nio² ¹Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, 464-8602, Japan ²Nishina Center, RIKEN, Wako, Japan 351-0198 ³Department of Physics, Nagoya University, Nagoya, Japan 464-8602 ⁴Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA (Received 24 May 2012; published 13 September 2012)

SM	116 591 810	100 %	#diagrams
QED(tot)	116 584 718.931	99,9939 %	
2	116 140 973.321	99,6133 %	1
4	413 217.626	0,3544 %	9
6	30 141.902	0,0259 %	72
8	381.004	0,0003 %	891
10	5.078	4•10-6 %	12672

week ending 14 SEPTEMBER 2012

VI(granne

VI(f)

VI(h)

VI(i)

VI(j)

Hadronic cross section data and their analysis

Cross section data collected either via energy scan (VEPP-2000, ...) or using the ISR technique (BaBar, CLEO, KLOE, BESIII,...)

Determine the ISR luminosity:

 $\frac{d\sigma_{\rm ISR}(\sqrt{s'})}{\sqrt{s'}} = \frac{2\sqrt{s'}}{s} W(s, E_{\gamma}, \theta_{\gamma}) \sigma(\sqrt{s'}) \qquad W: \text{ radiator function}$

Monte Carlo event generators for $e^+e^- \rightarrow hadrons(\gamma)$, e.g. BABAYAGA, PHOKHARA

Several variants of ISR analyses:

- Tagged vs. untagged ISR photon
- Measured radiator function vs. event generator

Other issues: particle ID and π - μ separation

Decade-long effort to measure e^+e^- cross sections

 $\sqrt{s} \lesssim 2 \,\text{GeV}$: sum of exclusive channels

 $\sqrt{s} > 2 \text{ GeV}$: inclusive channels, narrow resonances, perturbative QCD

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(0.83)(3.23)(0.55)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(0.40)(1.10)(0.86)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.03)(0.27)(0.14)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.06)(0.48)(0.26)	18.15(74)	-0.12
K^+K^-	23.08(0.20)(0.33)(0.21)	23.00(22)	0.08
$K_S K_L$	12.82(0.06)(0.18)(0.15)	13.04(19)	-0.22
$\pi^0\gamma$	4.41(0.06)(0.04)(0.07)	4.58(10)	-0.17
Sum of the above	626.08(0.95)(3.48)(1.47)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\overline{c}$)	33.45(71)	34.45(56)	-1.00
J/ψ , $\psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)	16.95(19)	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	$694.0(1.0)(3.5)(1.6)(0.1)_{\psi}(0.7)_{\rm DV+QCD}$	692.8(2.4)	1.2

$$a_{\mu}^{\text{hvp, LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{m_{\pi^0}^2}^{\infty} ds \, \frac{R_{\text{had}}(s)\hat{K}(s)}{s^2}$$

[Aoyama et al., Phys. Rep. 887 (2020) 1, arXiv:2006.04822]

White Paper estimate of the HVP contribution

Merging procedure

- Determine $a_{\mu}^{\text{hvp, LO}}$ as the sum of simple averages of individual hadronic channels (DHMZ, KNT, CHHKS below 1 GeV), including correlations in the data
- Experimental and theoretical uncertainties: use maximum error estimate in each channel (except $\pi^+\pi^-$) of either DHMZ or KNT
- Extra systematic uncertainty of $\Delta \equiv \frac{1}{2}$ |DHMZ KNT| in each channel, except $\pi^+\pi^-$; For $\pi^+\pi^-$: use maximum of Δ and tension between BaBar and KLOE
- Add uncertainty associated with duality violations and perturbative QCD

 $a_{\mu}^{\text{hvp, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{syst}}(0.7)_{\text{DV+QO}}$

$$+OCD \times 10^{-10} = 693.1(4.0) \times 10^{-10}$$
 [0.6%]

