

How to understand the hadron spectrum

Meike Küßner

Institut für Experimental Physik I – Ruhr-Universität Bochum

DPG Frühjahrstagung - Giessen

12th of March 2024

Meike Küßner

DPG Frühjahrstagung 2024 - Giessen

Fundamental Questions

The Higgs mechanism creates the mass of the fundamental particles, but this is not the end of the story!

We even do not understand "conventional" matter like the proton!

Meike Küßner

2

DPG Frühjahrstagung 2024 - Giessen

Open Questions of QCD

At a closer look, hadrons show a very complex inner structure!

- $\alpha_S \sim 1$, therefore processes are not suppressed anymore
- QCD becomes non-perturbative
- Theoretically very challenging since perturbative techniques fail
- Effective field theories are often model dependent and lattice calculations computational expensive

From the Perspective of Strong Interaction

- The mass of hadrons is predominantly generated by strong interaction (>90% in case of the proton)
- To understand how mass is generated we investigate other systems, e.g. with explicit gluonic degrees of freedom

• For a fermion-antifermion system not all quantum numbers can be formed

$$P = (-1)^{L+1}$$
, $C = (-1)^{L+S}$

- Exotic quantum numbers: $J^{PC} = 0^{+-}, 0^{--}, 1^{-+}, 2^{+-}, \dots$
- But: Further states have been found which show odd properties or even exotic quantum numbers!

Light Meson Regime

- Light meson regime is extremely populated!
- Several (broad) interfering resonances of the same q.n.
- Various inelastic channels and thresholds opening
- Identifying and measuring resonance properties is not straight forward
- Resonances not always look like peaks
 Peaks not necessarily caused by a resonance
- Analysing a single channel is not enough to disentangle states unambiguously
- More sophisticated tools and descriptions needed!

spectrum of well established states

Light Meson Regime

- Light meson regime is extremely populated!
- Several (broad) interfering resonances of the same q.n.
- Various inelastic channels and thresholds opening
- Identifying and measuring resonance properties is not straight forward
- Resonances not always look like peaks
 Peaks not necessarily caused by a resonance
- Analysing a single channel is not enough to disentangle states unambiguously
- More sophisticated tools and descriptions needed!

spectrum of well established states

We should start thinking beyond experimental collaborations!

5

DPG Frühjahrstagung 2024 - Giessen

Experimental Possibilities

- Each experiment, detector and process has its own advantages
- To tackle these challenges, we need to combine forces

Meike Küßner

DPG Frühjahrstagung 2024 - Giessen

Experimental Possibilities

- Each experiment, detector and process has its own advantages
- To tackle these challenges, we need to combine forces

Meike Küßner

6

DPG Frühjahrstagung 2024 - Giessen

Why Coupled Channel Approach?

Breit-Wigner functions are widely used in single channel analyses which provides a good approximation for isolated resonances decaying to one channel

If this is not the case:

- there might be a violation of unitarity
- the extracted resonance parameters are not unique and depend on the process

Why Coupled Channel Approach?

Advantages compared to single channel fits:

- More constraints due to common amplitudes and shared parameters
- Conservation of unitarity by using sophisticated models as e.g. K-matrix, N/D, ...
- Better description of threshold effects
- Multiple resonances directly measurable in one analysis
- Proper determination of pole parameters and coupling strengths

One Prominent Example: The Lightest Hybrid Candidate

Two π_1 hybrid candidates below 2 GeV are listed in PDG

- one at around 1.4 GeV only seen in $\pi\eta$
- the other at around 1.6 GeV seen in $\pi\eta$ but not in $\pi\eta$
- Parameters obtained by Breit-Wigner fits!
 - Theory: Only one π_1 state predicted slightly below 2 GeV

Coupled Channel Analysis of $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$

- Combining data from different experiments:
- $\bar{p}p \to \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$ data in flight form Crystal Barrel at LEAR
- COMPASS data of P- and D-waves in the $\pi\eta$ and $\pi\eta'$ systems
- 11 different $\pi\pi$ scattering data samples
- Simultaneously described using the K-Matrix formalism in the P-vector approach
- The whole process from the initial to the final state is described in all phase space dimensions

10

DPG Frühjahrstagung 2024 - Giessen

Coupled Channel Analysis of $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$

• Exotic π_1 wave significantly contributing in the $\pi^0\eta$ system!

Eur. Phys. J. C (2021) 81, 1056

- Description with one pole possible!
- Confirmation of the JPAC analysis based on N/D-method Phys. Rev. Lett. 122 (2019) 4, 042002

Coupled Channel Analysis of pp and COMPASS Data

name	relevant data	Breit-Wigner mass [MeV/c ²]	Breit-Wigner width Γ [MeV]	-			
$K^{*}(892)^{\pm}$	$\bar{p}p$	$893.8 \pm 1.0 \pm 0.8$	$56.3 \pm 2.0 \pm 1.0$				
<i>φ</i> (1020)	<i>̄</i> pp	$1018.4 \pm 0.5 \pm 0.2$	4.2 (fixed)				
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	-			
$f_0(980)^{++}$	scat	$977.8 \pm 0.6 \pm 1.4$	$98.8 \pm 6.6 \pm 11.2$				
$f_0(980)^{+++}$	scat	$992.6 \pm 0.3 \pm 0.5$	$61.2 \pm 1.2 \pm 1.7$				
$f_0(1370)$	scat	$1281 \pm 11 \pm 26$	$410 \pm 12 \pm 50$			Coveral	
$f_0(1500)$	$\bar{p}p + \text{scat}$	$1511.0 \pm 8.5 \substack{+3.5 \\ -14.0}$	$81.1 \pm 4.5 \substack{+26.9 \\ -0.5}$		Se	verarre	
$f_0(1710)$	$\bar{p}p + \text{scat}$	$1794.3 \pm 6.1 {}^{+47.0}_{-61.2}$	$281 \pm 32 {}^{+12}_{-80}$			simi	
<i>f</i> ₂ (1810)	scat	$1769 \pm 26 ^{+3}_{-26}$	$201 \pm 57 {+13 \atop -87}$				
$f_2(X)$	scat	$2119.9 \pm 6.4 \substack{+25.7 \\ -1.1}$	$343 \pm 11 \stackrel{+32}{_{-11}}$			_	
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ [%]	Th	is para	
π_1	$\bar{p}p + \pi p$	$1623 \pm 47 {}^{+24}_{-75}$	$455\pm88~^{+144}_{-175}$	$554 \pm 110 \ ^{+180}_{-27}$		Can be	
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{KK}/\Gamma_{\pi\eta}$ [%]	-		
$a_0(980)^{}$	<i>p̄p</i>	$1002.7 \pm 8.8 \pm 4.2$	$132 \pm 11 \pm 8$	$14.8 \pm 7.1 \pm 3.6$			
$a_0(980)^{-+}$	$\bar{p}p$	$1003.3 \pm 8.0 \pm 3.7$	$101.1 \pm 7.2 \pm 3.0$	$13.5 \pm 6.2 \pm 3.1$			
<i>a</i> ₀ (1450)	$\bar{p}p$	$1303.0 \pm 3.8 \pm 1.9$	$109.0 \pm 5.0 \pm 2.9$	$396 \pm 72 \pm 72$			
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{KK}/\Gamma_{\pi\eta}$ [%]	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ [%]	-	
<i>a</i> ₂ (1320)	$\bar{p}p + \pi p$	$1318.7 \pm 1.9 {}^{+1.3}_{-1.3}$	$107.5 \pm 4.6 {}^{+3.3}_{-1.8}$	$31 \pm 22 {+9 \atop -11}$	$4.6 \pm 1.5 ^{+7.0}_{-0.6}$	-	
<i>a</i> ₂ (1700)	$\bar{p}p + \pi p$	$1686 \pm 22 {}^{+19}_{-7}$	$412 \pm 75 {}^{+64}_{-57}$	$2.9 \pm 4.0 {}^{+1.1}_{-1.2}$	$3.5 \pm 4.4 {}^{+6.9}_{-1.2}$		
name	relevant data	pole mass [MeV/c ²]	pole width Γ [MeV]	$\Gamma_{\pi\pi}/\Gamma$ [%]	Γ _{KK} /Γ [%]	Γ _{ηη} /Γ [%]	
<i>f</i> ₂ (1270)	$\bar{p}p + \text{scat}$	$1262.4 \pm 0.2 \substack{+0.2 \\ -0.3}$	$168.0 \pm 0.7 \substack{+1.7 \\ -0.1}$	$87.7 \pm 0.3 \begin{array}{c} ^{+4.8}_{-4.4} \end{array}$	$2.6 \pm 0.1 \stackrel{+0.1}{_{-0.2}}$	$0.3 \pm 0.1 \substack{+0.0 \\ -0.1}$	
$f_2'(1525)$	$\bar{p}p + \text{scat}$	$1514.7 \pm 5.2 \substack{+0.3 \\ -7.4}$	$82.3 \pm 5.2 \begin{array}{c} +11.6 \\ -4.5 \end{array}$	$2.1 \pm 0.3 \substack{+0.8 \\ -0.0}$	$67.2 \pm 4.2 \substack{+5.0 \\ -3.8}$	$9.8 \pm 3.8 \substack{+1.7 \\ -3.3}$	
<i>ρ</i> (1700)	$\bar{p}p + \text{scat}$	$1700 \pm 27 {}^{+13}_{-16}$	$181 \pm 25 {}^{+0.0}_{-16}$	$13.6 \pm 1.2 \substack{+0.9 \\ -0.5}$	$0.8 \pm 0.1 \substack{+0.0 \\ -0.0}$	-	

ral resonance properties measured simultaneously within one fit!

parameterisation is universal an be used in other analyses!

12

 $\Gamma_{\eta\eta}/\Gamma$ [%]

Input for CP Violation Studies?

- CP violation in $B \rightarrow 3h$ is very much depending on intermediate resonances
- Strong and weak phase CPV contributions need to be separated
- Mechanisms from strong interaction as final state interaction assumed to play a big role!
- The Hadron spectroscopy community has the tools!
- Descriptions for $(\pi\pi)_{S/D}$ above $2 \text{ GeV}/c^2$ needed scattering data missing

Meike Küßner

Learning More About the Inner Structure

Besides measuring resonance parameters as mass, width, ...

Usually: Measure form factors!

Two photon physics

- Clean e.m. process, only sensitive to charge
- Complementary information on glueball candidates!
- States with even C-parity $0^{\pm +}, 2^{\pm +}, \ldots$ can be directly produced

Untagged reactions:

- Scattering angles of electron and positron are small and are not detectable
- Quasi real photons carrying small virtuality => spin 1 strongly suppressed

14

e⁺

Coupled Channel Analysis of Two-Photon Data

- K-matrix parameterisation (EPJ C (2021) 81, 1056) fixing all pole parameters on decay side
- Determination of two-photon width based on pole residue (even for f_0 wave)

Coupled Channel Analysis of Two-Photon Data

- K-matrix and thus the pole itself contain all resonance properties
- Masses and widths defined by the pole position in the complex energy plane of the T-matrix sheet closest to the physical sheet

Benefits of Two-Photon Data

Tagged two-photon reactions:

- Measuring transition form factors of light mesons useful to cleanly determine gluonic admixtures!
- Momentum transfer of involved photons can be measured
- Formation of J = 1 states possible due to non negligible γ virtuality

- TFF measurements at BESIII especially powerful at $Q^2 = 0.3 1.5 \text{ GeV}^2$
- Higher beam momenta needed to access higher Q^2 regime and states above 2 GeV, $(\chi_{c1}(3872)...)$
- BELLEII (?)

Unique Features of Radiative J/ψ decays

- Lightest glueball 0^{++} is predicted below $2 \,\mathrm{GeV}/c^2$
- Observed states $f_0(1370)$, $f_0(1500)$, $f_0(1710)$ likely to be mixtures of pure glueball and quark component
- BESIII has accumulated very high statistics at J/ψ
 - 50 times more than 10 years ago!

Physics-, statistics- and phase space-wise great opportunities to search for glueball candidates!

Phys. Rev. D 73, 014516 (2006)

Recent Analyses

Coupled channel fit by Sarantsev et. al.: Phys. Lett. B 816 (2021), 136227

- $J/\psi \rightarrow \gamma + (\pi^0 \pi^0, K^0_S K^0_S, \eta \eta, \omega \phi)$ (BESIII)
- $\pi^+\pi^-$ scattering data (CERN-Munich, GAMS, BNL)
- $\bar{p}N \rightarrow 3$ mesons (CB-LEAR)
- Indirect hint for the light scalar glueball candidate by measuring production strengths of scalar states
- 0⁺⁺ glueball mixing interpretation via coupling of the 10 different scalar singlet and octet states

Coupled channel fit by JPAC group:

- Used $J/\psi \rightarrow \gamma \pi^0 \pi^0$, $\gamma K_S^0 K_S^0$ (BESIII) data
- Only 4 scalar poles needed not as 10
- No statement towards glueball contributions
- But: Theory has only access to binned data based on older data samples

EPJ C **82**, 80 (2022)

Meike Küßner

DPG Frühjahrstagung 2024 - Giessen

Recent Analyses

Much higher statistics available now - 50 times more!

Event based mass-independent and coupled channel amplitude analyses in preparation for $J/\psi \rightarrow \gamma \pi^0 \pi^0$, $\gamma K_S^0 K_S^0$ and $\gamma \eta \eta$!

Ultimate goal coupled channel analysis together with $\gamma\gamma$ data...

DPG Frühjahrstagung 2024 - Giessen

 $J/\psi \rightarrow \gamma \eta' \eta$

Μ(ηη')(GeV/c²)

PRL 129, 19, 192002 (2022) PRD 106, 7, 072012 (2022)

Additionally need of a spin exotic contribution found! $\Rightarrow \eta_1(1855)$

- $M = (1855 \pm 9^{+6}_{-1}) \text{ MeV}/c^2$, $\Gamma = (199 \pm 18^{+3}_{-8}) \text{ MeV}$
- May be the isoscalar partner of the $\pi_1(1600)$
- Further studies needed!
- Additional decay channels need to be investigated to improve the PWA model

New Methods

In order to perform such computational expensive coupled analyses with increasing statistics we need to get faster!

Development of faster algorithms required:

Including AI techniques where helpful

but leads to a:

More sustainable use of resources and data!

New network project working on techniques to accelerate PWAs

- Automated differentiation
- Improved gradient decent methods
- Pseudo event clustering

DPG Frühjahrstagung 2024 - Giessen

Future Experimental Prospects

- Several interesting research projects on the horizon!
- p
 *p*p annihilations have unique discovery potential, several resonances were observed here
- Planned hadron programme of AMBER can contribute here
- Ultimately we will need a high statistics and precision, as possible with PANDA

Summary

- Although light mesons are studied for decades, there are still many open questions
- The non-perturbative regime of QCD challenges theory and experiment!
- This affects also other sectors as CP violation!
- Sophisticated line shape models should be used whenever possible
- Different experiments and theory need to collaborate to solve this
- Coupled channel analyses seem to be a good tool to disentangle crowded spectra
- Work closer together in the community common effort is needed to answer fundamental questions!
- This strengthens the research field, especially in times when basic research is experiencing more headwinds

Summary

- Although light mesons are studied for decades, there are still many open questions
- The non-perturbative regime of QCD challenges theory and experiment!
- This affects also other sectors as CP violation!
- Sophisticated line shape models should be used whenever possible
- Different experiments and theory need to collaborate to solve this
- Coupled channel analyses seem to be a good tool to disentangle crowded spectra
- Work closer together in the community common effort is needed to answer fundamental questions!
- This strengthens the research field, especially in times when basic research is experiencing more headwinds

Thank You!