Collective phenomena in small and large hadronic collisions

Alice Ohlson Lund University

EMMI RRTF Open Symposium, 18 March 2024

High-temperature regime of QCD

- but behave quasi-freely
 - Quark-Gluon Plasma (QGP)

A. Ohlson (Lund U.)

• At high temperatures and densities, quarks and gluons are no longer confined into hadrons

Observables in the detector: spatial and momentum distributions of stable final state particles (π , K, p, e, μ)

Coordinate systems (φ, η)

A. Ohlson (Lund U.)

Geometry of a heavy-ion collision

- Central (head-on) collision \rightarrow smaller impact parameter \rightarrow larger overlap region
 - \rightarrow more particles produced
- Peripheral (glancing) collision \rightarrow larger impact parameter \rightarrow smaller overlap region \rightarrow fewer particles produced
- Centrality is usually quoted as a percentage of the cross-section
- biases/autocorrelations in the results

Centrality determination by counting number of final-state particles ("multiplicity") or energy deposition in a region of phase space *independent* from the measurement, to avoid

Isotropic expansion of the fireball

- Pressure gradients build up in the fireball
- Particles boosted in the radial direction
 → "radial flow"
 - \rightarrow higher mean $p_{\rm T}$
- Velocity boost leads to enhancement in ratio of protons (heavy) to pions (light)

A. Ohlson (Lund U.)

Anisotropic expansion

- Stronger in-plane pressure gradients, velocity field \rightarrow particles boosted in-plane more than out-of-plane
- Particles correlated with a "global" symmetry plane

A. Ohlson (Lund U.)

Anisotropic flow coefficients

- Particle distribution described by a Fourier cosine series $dN/d\phi \sim 1 + 2v_2\cos(2(\phi-\Psi_2))$
- $v_2 \rightarrow$ "elliptic flow"

A. Ohlson (Lund U.)

plane
$$\Psi_{RP} \simeq \Psi_2$$

Two-particle correlations

A. Ohlson (Lund U.)

Collectivity in small and large systems

- Long-range correlations (localized in $\Delta \varphi$, extended in $\Delta \eta$) \rightarrow collectivity
- Two-particle ($\Delta \varphi$) distribution described by Fourier series with coefficients v_n^2 $dN/d\phi \sim 1 + 2v_2^2 \cos(2\Delta\phi)$

ALICE, PLB 708 (2012) 249, arXiv:1109.2501 [nucl-ex]

Anisotropic flow coefficients

- Particle distribution described by a Fourier cosine series $dN/d\phi \sim 1 + 2v_2\cos(2(\phi-\Psi_2))$
- $v_2 \rightarrow$ "elliptic flow"
- Measurements of v_2 are described very well by hydrodynamic models \rightarrow QGP behaves as a liquid!
- Viscosity (η/s) is near quantum lower bound \rightarrow QGP is the "perfect liquid"

What is flowing?

- species converges on a common curve \rightarrow flow at the *parton* level
- The LHC story: NCQ scaling broken on the level of 10-20%, it's mostly a mass effect proton at low p_T and follows the mesons at higher p_T

PHENIX, Phys. Rev. Lett 98 (2007) 162301, arXiv: nucl-ex/0608033

• The RHIC story: when scaled by the number of quarks (NCQ), the flow of different particle

 \rightarrow interesting case is the φ meson (2 quarks, but mass similar to the proton), follows the

A. Ohlson (Lund U.)

What is flowing?

- species converges on a common curve \rightarrow flow at the *parton* level
- The LHC story: NCQ scaling broken on the level of 10-20%, it's mostly a mass effect proton at low p_T and follows the mesons at higher p_T

PHENIX, Phys. Rev. Lett 98 (2007) 162301, arXiv: nucl-ex/0608033

• The RHIC story: when scaled by the number of quarks (NCQ), the flow of different particle

 \rightarrow interesting case is the φ meson (2 quarks, but mass similar to the proton), follows the

A. Ohlson (Lund U.)

Higher-order flow coefficients

- Due to event-by-event fluctuations of the positions of nucleons, overlap region is not perfectly symmetric \rightarrow development of triangular flow v₃, quadrangular flow v₄,... with respect to higher-order symmetry planes Ψ_3, Ψ_4, \ldots
- v_n coefficients sensitive to geometry and fluctuations
- Hydrodynamic response suggests that

 $V_n \propto \varepsilon_n$

A. Ohlson (Lund U.)

Bayesian analysis of particle yields, mean p_T , v_2 , v_3 , v_4 measured by ALICE

A. Ohlson (Lund U.)

A. Ohlson (Lund U.)

• Bayesian analysis of particle yields, mean p_T , v_2 , v_3 , v_4 measured by ALICE 10° \rightarrow extract shear and bulk viscosity $\eta/s(T)$, $\zeta/s(T)$ Flow cumulants Yields 🗕 🛉 Pb–Pb 2.76 TeV

A. Ohlson (Lund U.)

A. Ohlson (Lund U.)

- Differential flow with respect to momentum, particle species, collision energy, pseudorapidity (decorrelation)
- Event-by-event fluctuations of flow

ALICE, JHEP 07 (2018) 103, arXiv:1804.02944 [nucl-ex]

- Differential flow with respect to momentum, particle species, collision energy, pseudorapidity (decorrelation)
- Event-by-event fluctuations of flow
- Linear and non-linear flow components beyond $v_n \propto \varepsilon_n$
- Correlations between flow harmonics

arXiv:2102.12180 [nucl-ex]

- Differential flow with respect to momentum, particle species, collision energy, pseudorapidity (decorrelation)
- Event-by-event fluctuations of flow
- Linear and non-linear flow components beyond $v_n \propto \varepsilon_n$
- Correlations between flow harmonics including radial flow

$$\rho\left(v_{n}^{2},\langle p_{T}\rangle\right) = \frac{cov}{\sqrt{var\left(v_{n}^{2}\right)^{2}}}$$

ATLAS-CONF-2021-001

- Differential flow with respect to momentum, particle species, collision energy, pseudorapidity (decorrelation)
- Event-by-event fluctuations of flow (η)
- Linear and non-linear flow components $\zeta_{\zeta_{j}}^{\prime\prime\prime}$ beyond $v_n \propto \varepsilon_n$
- Correlations between flow harmonics including radial flow
- These higher-order observables are very sensitive to properties of the QGP!

	_																						
$ au_{fs}$	0.00	0.17	1.05	1.01	0.85	0.60	1.42	2.36	3.94	0.09	0.77	0.30	1.46	1.25	1.26	1.98	1.44	0.65	6.25	12	30	2.07	40
/s) _{slope}	0.00	0.14	0.19	0.19	0.18	0.49	1.43	2.10	3.30	0.26	0.13	0.81	0.85	1.74	1.37	3.03	1.36	0.70	7.02	1.70	34	30	1.00
T_c	0.00	0.25	0.03	0.03	0.04	0.18	0.46	0.48	0.37	0.32	0.55	0.83	0.93	0.80	0.40	0.45	0.61	0.41	3.53	1.44	4.46	7.15	0.2
$\eta/s(T_c)$	0.00	0.08	0.22	0.21	0.14	1.65	3.29	4.87	6.00	0.95	3.84	2.92	5.44	2.53	1.27	2.85	2.76	1.61	15	9.80	22	29	14
$\eta/s)_{\rm crv}$	0.00	0.17	0.05	0.05	0.05	0.19	0.38	0.53	0.69	0.20	0.36	0.55	0.69	0.40	0.40	0.73	0.75	0.13	1.81	4.72	2.20	8.41	6.1
/s) _{peak}	0.01	0.44	1.16	1.01	0.73	2.26	2.67	3.79	6.40	0.59	0.32	1.48	1.11	0.34	1.59	1.04	1.15	1.49	1.49	2.57	3.74	2.04	15
$(s)_{max}$	0.00	0.07	1.05	0.96	0.77	0.37	0.13	0.12	0.37	0.20	0.01	0.53	1.12	0.52	0.64	1.26	0.59	0.44	1.43	8.00	3.02	1.58	2.9
$(s)_{width}$	0.00	0.01	0.20	0.15	0.07	0.19	0.04	0.09	0.33	0.09	0.26	0.40	1.69	0.39	1.66	1.55	1.35	0.38	1.41	1.21	1.77	23	19
T_{switch}	0.01	1.34	0.25	0.21	0.16	1.30	3.51	4.64	5.86	0.77	0.45	2.03	3.34	3.95	2.42	1.98	1.00	1.96	17	13	4.08	0.47	6.2
	Ц	μ	± >	± >	∓	/2	/3	/4	/5	22	23	22	33	22	23	22	33	2)	2)	3)	*	*	*
	2	р/	Ľ,	Ľ,	d					<u>م</u>	Ъ,	, 2	<u></u> ,0	4	5,	, 2,	6,	~	, ,		4	С О	6
	<	± d	βT	μ	μT					$\boldsymbol{\varkappa}$	×	×	$\boldsymbol{\varkappa}$	Q	Q	ρ	Q	$\ddot{\Box}$			с,	с,	4
	q	۲p	\sim	\sim	\sim													S(IS(S(5	5	\sim
																		Ζ	Ζ	Ζ	Ŭ	Ŭ	Ŭ
																					NS	NS	N

J.E. Parkkila, A. Onnerstad, S. F. Taghavi, C. Mordasini, A. Bilandzic, D.J. Kim, arXiv: 2111.08145 [hep-ph]

low multiplicity

Xe-Xe 5.44 TeV

Pb-Pb 5.02 TeV

Collective behavior in small systems

• Flow-like (v_n) signals observed in high-multiplicity p+p and p+Pb collisions as well!

(d) CMS N \geq 110, 1.0GeV/c<p_<3.0GeV/c

CMS, JHEP 09 (2010) 091, arXiv: 1009.4122 [hep-ex]

arXiv:1512.00439 [nucl-ex]

Collectivity in small and large systems

A. Ohlson (Lund U.)

ALICE, PLB 719 (2013) 29, arXiv: 1212.2001 [nucl-ex]

Surprise!

But is it collective...?

- (e.g. in pseudorapidity)
- Multi-particle cumulants used to measure non-zero v₂

• Remember! Collectivity (an observation) does not imply hydrodynamics (an interpretation)

A. Ohlson (Lund U.)

• Collectivity: momentum correlations among many particles which are widely separated

Isotropic flow

ALI-PREL-110279

• Increase in baryon-to-meson ratio indicates presence of radial boost in p+p, p+Pb, Pb+Pb

Anisotropic flow V_n

- Non-zero v_n coefficients measured across all multiplicities in p+p, p+Pb, Xe+Xe, and Pb+Pb systems
- No clear "turn-off" or "turn-on" of collectivity
- Is this hydrodynamic flow? Is there a geometry in small systems? Or is it just fluctuations?

Are there enough parton-parton interactions to produce this collective effect (e.g. translate the initial anisotropy to the final state)?

ALICE, PRL 123 (2019) 142301, arXiv: 1903.01790 [nucl-ex]

The role of initial geometry

- v₂ measured in spherical (p+Au), ellipsoidal (d+Au), and triangular (³He+Au) systems
- Hydrodynamics predicts translation from initial state eccentricity to final state anisotropy $v_n \propto \varepsilon_n$
- Measurements consistent with hydro expectation

$$v_2^{p+Au} < v_2^{d+Au} \approx v_2^{^3He+Au}$$

$$v_3^{p+Au} \approx v_3^{d+Au} < v_3^{^3He+Au}$$

A. Ohlson (Lund U.)

The role of initial geometry

- v₂ measured in spherical (p+Au), ellipsoidal (d+Au), and triangular (³He+Au) systems
- Hydrodynamics predicts translation from initial state eccentricity to final state anisotropy $v_n \propto \varepsilon_n$
- Measurements consistent with hydro expectation

$$v_2^{p+Au} < v_2^{d+Au} \approx v_2^{^3He+Au}$$
$$v_3^{p+Au} \approx v_3^{d+Au} < v_3^{^3He+Au}$$

A. Ohlson (Lund U.)

Digging deeper into small-system v_n

• Identified-particle v₂ shows similar mass ordering and baryon-meson splitting in p+Pb as in Pb+Pb

ALI-PREL-503272

A. Ohlson (Lund U.)

- Measurements of higher-order correlations and fluctuations are ongoing
 - Can be extremely sensitive to kinematic selections and non-flow removal!

πάντα $\hat{\rho}$ εί: Everything flows, or does it?

Increase the MPI Number of parton-parton interactions

> Image from Yen-Jie Lee's talk at Initial **Stages 2023**

A. Ohlson (Lund U.)

Open questions

- microscopic description?
- \bullet
- Is there a medium produced in small systems? What are its properties?
- What is the interplay between momentum scales (hard and soft probes)? Is there jet quenching in small systems?

• How does initial state energy deposition (geometry) transfer into final-state anisotropic particle distribution? Is hydrodynamics the explanation in large systems? Can we develop a

What is the origin of anisotropic flow in small systems? Is hydrodynamics the answer?

• How many scatterings or interactions does it take to generate flow, equilibrate, thermalize?

Transverse size vs multiplicity

Image from Yen-Jie Lee's <u>talk</u> at Initial Stages 2023

Multi-particle correlations in small systems

- particles?
- Measure multi-particle cumulants Example: four-particle cumulants

$$c_{2}\{4\} = \langle \langle \cos 2 \left(\varphi_{1} + \varphi_{2} - \varphi_{3} - \varphi_{4} \right) \rangle \rangle \qquad \text{four-particle correlation} \\ - \langle \langle \cos 2 \left(\varphi_{1} - \varphi_{3} \right) \rangle \rangle \langle \langle \cos 2 \left(\varphi_{2} - \varphi_{4} \right) \rangle \rangle \qquad \text{subtract two-particle correlation} \\ - \langle \langle \cos 2 \left(\varphi_{1} - \varphi_{4} \right) \rangle \rangle \langle \langle \cos 2 \left(\varphi_{2} - \varphi_{3} \right) \rangle \rangle \rangle$$

$$v_n\{4\} = \sqrt[4]{-c_n\{4\}}$$

Similarly for six-particle, eight-particle cumulants

• Are these correlations a true "collective" (many-particle) effect, or just between few (~ 2)

