Production of loosely-bound objects in heavy-ion collisions at RHIC and LHC

July 16, 2024 GSI EMMI Physics Day

Benjamin Dönigus

Institut für Kernphysik Goethe Universität Frankfurt

Content

- Introduction
- Nuclei and Exotica
 - (Anti-)nuclei
 - (Anti-)hypernuclei
- Summary & Outlook

Zoo of hadrons

Baryons

Proton (p) \rightarrow uud Neutron (n) \rightarrow udd Lambda (Λ) \rightarrow uds

<u>Mesons</u>

 π -Meson $\rightarrow d\bar{u}$ K-Meson $\rightarrow u\bar{s}$

- Hadrons are consisting of quarks, anti-quarks und gluons
- Strangeness as new quark flavour not part of every-day matter, but is created for instance in high-energy particle collisions
- Theoretical description of hadrons through quantum chromo dynamics (QCD)

Collisions

- Nuclei are accelerated to high energies, i.e. speeds close to the speed of light, and are then collided
- This leads to the creation of (new) particles that can be detected in the experiments surrounding the collision point

Asterix & Obelix, Asterix and the Great Divide EMMI Physics Day - Benjamin Dönigus

Collisions

- Nuclei are accelerated to high energies, i.e. speeds close to the speed of light, and are then collided
- This leads to the creation of (new) particles that can be detected in the experiments sorrounding the collision point

Asterix & Obelix, Asterix and the Great Divide EMMI Physics Day - Benjamin Dönigus

Experiments: STAR

STAR

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

Experiments: ALICE

GOETHE

UNIVERSITÄT FRANKFURT AM MAIN

Pb

Pb

Interlude: Centrality

Central Pb-Pb collision: High multiplicity = large $dN/d\eta$ High number of tracks (more than 2000 tracks in the detector)

Peripheral Pb-Pb collision: Low multiplicity = small $dN/d\eta$ Low number of tracks (less than 100 tracks in the detector)

Introduction

Time \rightarrow

Cartoon of a Ultra-relativistic heavy-ion collision

Left to right:

- the two Lorentz contracted nuclei approach,
- collide,
- form a Quark-Gluon Plasma (QGP),
- the QGP expands and hadronizes,
- finally hadrons rescatter and freeze

Plot by S. Bass, Duke University; http://www.phy.duke.edu/research/NPTheory/QGP/transport/evo.jpg

beam

The fireball evolution:

- Starts with a "pre-equilibrium state"
- Forms a Quark-Gluon Plasma phase (if T is larger than T_c)

beam

- At chemical freeze-out, T_{ch}, hadrons stop being produced
- At kinetic freeze-out, T_{fo}, hadrons stop scattering

Lattice QCD results

A. Bazavov et al. (hotQCD) Phys. Rev. D90 (2014) 094503 & PLB 795 (2019) 15 Similar results from Budapest-Wuppertal group: S. Borsányi et al. JHEP 09 (2010) 073 & PRL 125 (2020) 052001

Temperature of the source

Analogy:

Light source \rightarrow particle source

 Multiplicity described best with T = 1 900 000 000 000 °C (1,9 trillion degree centigrade)

 \rightarrow 100 000 times hotter than in the interior of the sun!

1/40 eV = 20 °C

Plot by A. Andronic, GSI-Heidelberg group arXiv:1407.5003 [nucl-ex]

Thermal model

• Statistical (thermal) model with only three parameters able to describe particle yields (grand chanonical ensemble)

- chemical freezeout temperature T_{ch}
- baryo-chemical
 potential μ_B
- Volume V
- → Using particle yields as input to extract parameters

A. Andronic et al., PLB 673 (2009) 142, updated

EMMI Physics Day - Benjamin Dönigus

Predicting yields of bound

Key parameter at LHC energies:

chemical freeze-out temperature T_{ch}

Strong sensitivity of

abundance of nuclei

to choice of T_{ch} due to:

1. large mass m

2. exponential dependence of the yield ~ $exp(-m/T_{ch})$

→ Binding energies small compared to T_{ch}

(Anti-)Nuclei

Coalescence

J. I. Kapusta, PRC 21, 1301 (1980)

Nuclei are formed by protons and neutrons which are nearby and have similar velocities (after kinetic freezeout)

Produced nuclei

- → can break apart
- → created again by final-state coalescence

Low momenta:

GOETHE

Nuclei are identified using the d*E*/dx measurement in the Time Projection Chamber (TPC)

ALICE

Higher momenta:

Velocity measurement with the Time-of-Flight (TOF) detector is used to calculate the m^2 distribution

Anti-Alpha

For the full statistics of 2011 ALICE identified 10 Anti-Alphas using TPC and TOF

STAR observed the Anti-Alpha in 2010: *Nature 473, 353 (2011)*

- *p*_T spectra getting harder for more central collisions (from pp to Pb-Pb) → showing clear radial flow
- Blast-Wave fits describe the data in Pb-Pb very well
- No hint for radial flow in pp

(Anti-)Deuteron ratio

Combined Blast-Wave fit

ALICE Collaboration, arXiv:1910.07678, see also arXiv:2311.11758

- Simultaneous Blast-Wave fit of π^+ , K⁺, p, d, t, ³He and ⁴He spectra for central Pb-Pb collisions leads to values for $\langle \beta \rangle$ and T_{kin} close to those obtained when only π ,K,p are used
- All particles are described rather well with this simultaneous fit

Mass dependence

GOETHE

ALICE Production of (anti-) nuclei is follwing an exponential, and decreases with mass as expected from thermal model In Pb-Pb the "penalty factor" for each additional baryon ~300 (for particles and antiparticles)

ALICE Collaboration, arXiv:1710.07531, NPA 971, 1 (2018)

Mass dependence

ALICE

- Production of (anti-) nuclei is follwing an exponential, and decreases with mass as expected from thermal model
- In Pb-Pb the "penalty factor" for each additional baryon ~300, in p-Pb ~600 and in pp ~1000

ALICE

d/p ratio rather well described by coalescence and (canonical) thermal model

Ratios vs. multiplicity

ALICE Collaboration, arXiv:2211.14015, Phys.Rev.C 107 (2023) 064904

- d/p ratio rather well described by coalescence and (canonical) thermal model
- Some tension for ³He/p and ³H/p over p_{T}

⁴He/p ratio significantly better described by the thermal model

Different model implementations describe the production probability, including light nuclei and hyper-nuclei, rather well at a temperture of about T_{ch} =156 MeV

EMMI Physics Day - Benjamin Dönigus

ALICE Collaboration, arXiv:1710.07531 NPA 971, 1 (2018) NPA

Hypernuclei

15

PSR J0348+0432

PSR J1614-2230

mass

14

Neutron stars and interactions

PNM

 $\Lambda N + \Lambda NN$ (II)

 $\Lambda N + \Lambda NN (I)$

ΛN

- Hyperon puzzle in neutron stars → hyperons make the EOS softer:
- Pure neutron matter (PNM) works well
- Known ∧N interaction → way to soft
- Including ANN 0.8 forces brings the mass slightly up
- Only additional 0.0 11 12 13
 ΛNN interaction works sufficiently ^{R [km]}

2.4

2.0

1.6

1.2

Hypernuclei

- Hypernuclei are unique probes to study nuclear structure
- Single Λ-hypernuclei are major source of extracting Λ-N interaction
- Correct Λ-N and Λ-N-N interaction needed to understand structure of neutron stars

D. Logoteta et al., Astron. Astrophys. 646 (2021) A55

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/c² (B_{Λ} =130 keV)

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/ c^2 (B_{Λ} =130 keV)

EMMI Physics Day - Benjamin Dönigus

Hypertriton

Bound state of Λ , p, n m = 2.991 GeV/c² (B_{Λ} =130 keV)

GOETHE WIVERSITÄT Hypertriton Identification

Bound state of Λ , p, n $m = 2.991 \text{ GeV}/c^2 (B_{\Lambda} = 130 \text{ keV})$ \rightarrow Radius of about 10.6 fm Decay modes:

$${}^{3}_{\Lambda} H \rightarrow^{3} H e + \pi^{-}$$

$${}^{3}_{\Lambda} H \rightarrow^{3} H + \pi^{0}$$

$${}^{3}_{\Lambda} H \rightarrow d + p + \pi^{-}$$

$${}^{3}_{\Lambda} H \rightarrow d + n + \pi^{0}$$

+ anti-particles

→ Anti-Hypertriton first observed by STAR Collaboration:

Science 328,58 (2010)

- Clear signal reconstructed by decay products
- Spectra can also be described by Blast-Wave model
 → Hypertriton flows as all other particles

Hypertriton spectra

• Anti-hypertriton/Hypertriton ratio consistent with unity vs. p_{T}

- Hypertriton signal recently also extracted in pp and p-Pb collisions
- Stronger separation between models as for other particle ratios, mainly due to the size of the hypertriton

Hypertriton in pp & p-Pb

- Hypertriton signal recently also extracted in pp and p-Pb collisions
- Stronger separation between models as for other particle ratios, mainly due to the size of the hypertriton

Hypertriton in pp & p-Pb

Hypertriton at RHIC

 Hypertriton signal recently also extracted in isobar collisions

Hypertriton/Λ ratio

- Hypertriton signal recently also extracted in isobar collisions
- Stronger separation between models as for other particle ratios, mainly due to the size of the hypertriton

A = 4 hypernuclei

- Large suppression expected for A
 = 4 hypernuclei by the SHM wrt A =
 3
- A = 4 hypernuclei are more bound and each has an excited state
 Phys. Rev. Lett. 115, 222501 (2015)
- The yields of these hypernuclei are enhanced with respect to the ground state due to the feed-down from excited states
- Also the yields of the SHM scale with the **spin-degeneracy**
- Resulting in a total enhancement of a factor 4 for both hypernuclei BD, EPJ Web Conf. 276 (2023) 04002

M. Schäfer, N. Barnea, A. Gal, Phys.Rev.C 106, L031001 (2022)

- For the first time, we are able to reconstruct A = 4 (anti)hypernuclei at the LHC and determine their production yield
- (Anti)hyperhydrogen-4 invariant-mass spectrum in Run 2
 Pb-Pb collisions at 5.02 TeV
- Examined in the two-body decay:

$$^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-} + c.c.$$

Reaching a local p-value of 6σ

- For the first time, we are able to reconstruct A = 4 (anti)hypernuclei at the LHC and determine their production yield
- (Anti)hyperhelium-4 invariant-mass spectrum in Run 2
 Pb-Pb collisions at 5.02 TeV
- Examined in the three-body decay:

 $^{4}_{\Lambda}\text{He} \rightarrow {}^{3}\text{He} + p + \pi^{-} + \text{c.c.}$

Reaching a local p-value of 4.4σ

- For the first time, we are able to reconstruct A = 4 (anti)hypernuclei at the LHC and determine their production yield
- First observation of the antihyperhelium-4 in Run 2 Pb-Pb collisions at 5.02 TeV

- First measurement of the (anti)hyperhelium-4 production yield
- Testing the dependence of the yields of the SHM with the spin-degeneracy
- Our yields confirm the hypothesis of excited states for both (anti)hypernuclei within 2σ
- currently dominated by statistical uncertainties
- with more data, a high precision measurement will be feasible (like for the Λ hyperon)

Outlook & Summary

Outlook

A. Andronic, private communication, model described in A. Andronic et al., PLB 697, 203 (2011) and references therein

- Explore QCD and QCD inspired model predictions for (unusual) multi-baryon states
- Search for rarely produced anti- and hyper-matter
- Test model predictions, e.g. thermal and coalescence

Conclusion

- ALICE@LHC and STAR@RHIC are well suited to study light (anti-)(hyper-) nuclei and perform searches for exotic bound states (A<5)
- Copious production of loosely bound objects measured by ALICE and STAR as predicted by the thermal model
- Models describe the data rather well
- Ratios vs. multiplicity trend described by both models
 only tension: Alpha vs. ³_AH
- New and more precise data can be expected in the next years

