Rasmus Ischebeck SYNCHROTRONS AND FREE ELECTRON LASERS

DS

PAULSCHERRERINSTHUT

Part of this work has received funding from the Gordon and Betty Moore Foundation through Grant GBMF4744 to Stanford (ACHIP), and from the European Union's Horizon 2020 Research and Innovation program under grant agreements No. 884104 and 101004730

Tom Lucas

- Cigdem Ozkan Loch
 - **Eduard Prat**
 - Sven Reiche
 - Thomas Schietinger

PHOTO 51 — RAYMOND GOSLING, ROSALIND FRANKLIN

STRUCTURE OF DNA — JAMES WATSON, FRANCIS CRICK

RECEPTOR BINDING DOMAIN OF SARS-CoV-2

Lan et al., Nature 581, 215–220 (2020) 5

BRILLIANCE OF X-RAY SOURCES

Key figure of merit comparing different photon sources

$$\mathcal{B} = \frac{\dot{N}_{\gamma}}{4\pi^2 \sigma_x \sigma_y \sigma_{x'} \sigma_{y'} (0.1\% \text{BW})}$$

Independent of the distance to the source

Peak Brilliance (I

EMITTANCE

Particles in the beam are described with the Hamiltonian formalism

$\mathcal{H} = E = T + V$	7
$(x, p_x), (y, p_y),$	(z, p_z)
$\frac{dx}{dt} = \frac{\partial \mathcal{H}}{\partial t}$	
$ \begin{array}{ccc} dt & \partial p_x \\ dp_x & \partial \mathcal{H} \end{array} $	
$\overline{dt} = -\overline{\partial x}$	

Phase space area in the transverse coordinates is called *emittance*

EMITTANCE IN A LINEAR ACCELERATOR

Emittance decreases with acceleration

Accelerating structures increase the longitudinal momentum, but leave the transverse momentum unchanged

In the absence of non-linear forces, the normalized emittance is constant

$$\varepsilon_n = \gamma \varepsilon$$

EMITTANCE IN A STORAGE RING

Emittance is damped by the emission of synchrotron radiation

S

$$\varepsilon(t) = \varepsilon(0) \exp\left(-2\frac{t}{\tau}\right) + \varepsilon(\infty) \left[1 - \exp\left(-2\frac{t}{\tau}\right)\right]$$

> The equilibrium emittance is determined by quantum mechanics

RADIATION DAMPING AND QUANTUM EXCITATION

Horizontal equilibrium emittance in a storage ring

$$\varepsilon_{x,\infty} = \frac{55}{32\sqrt{3}} \frac{\hbar}{m_e c} \gamma^2 \frac{\oint \frac{\gamma_x \eta_x^2 + 2\alpha_x \eta_x \eta_{p_x} + \beta_x \eta_{p_x}^2}{|\rho|^3} \mathrm{d}s}{\left(1 - \frac{\oint \frac{\eta_x}{\rho} \left(\frac{1}{\rho^2} + 2\frac{e}{P_0} \frac{\partial B_y}{\partial x}\right) \mathrm{d}s}{\oint \frac{1}{\rho^2} \mathrm{d}s}\right) \oint \frac{1}{\rho^2} \mathrm{d}s}$$

where:

h is Planck's constant,

m_e is the electron mass,

c is the speed of light,

y is the Lorentz factor,

the integrals are ring integrals around the storage ring, along the longitudinal coordinate s, α_x , β_x and γ_x are the Twiss parameters, which characterize the beam optics, η_x and η_{px} are the dispersion, i.e. the dependence of position and angle on beam energy, ρ is the (local) radius of curvature,

-e is the charge of the electron,

 P_0 is the nominal momentum of the particles, and B_{v} is the vertical component of the magnetic field

RADIATION DAMPING AND QUANTUM EXCITATION

Horizontal equilibrium emittance in a

Quantum mechanics

$$\varepsilon_{x,\infty} = \frac{55}{32\sqrt{3}} \frac{\hbar}{m_e c} \gamma^2 \frac{I_5}{j_x I_2}$$

$$\frac{\frac{\alpha_x \eta_x \eta_{p_x} + \beta_x \eta_{p_x}^2}{|\rho|^3} \mathrm{d}s}{\frac{+2\frac{e}{P_0} \frac{\partial B_y}{\partial x} \mathrm{d}s}{\frac{1}{\rho^2} \mathrm{d}s}} \int \oint \frac{1}{\rho^2} \mathrm{d}s}$$

■ a detailed description of the magnets around the ring

11

EINSTEIN AND PLANCK IN ONE EQUATION

EMITTANCE OF X-RAY SOURCES

Synchrotrons

emittance determined by radiation damping

Free electron lasers

(normalized) emittance determined by source

SLS DISMANTLING

October 2023

November 2023

Cigdem Ozkan Loch 15

SLS 2.0 CONSTRUCTION

January 2024

XO9LA

Mid-February 2024

INSTALLATION PROGRESS

March 2024

TARGET BEAM PARAMETERS

	SLS today	SLS 2.0 CDR	SLS 2.0 TDR
Lattice type	TBA	7-BA	7-BA
Circumference [m]	288	290.4	288
Periodicity (arc geometry)	3	12	3
Energy [GeV]	2.411	2.400	2.700
Beam current [mA]	400	400	400
Natural emittance [pm.rad]	5630	102	158
Energy spread [10 ⁻³]	0.88	1.03	1.16
Radiation loss per turn [keV]	549	554	688
Momentum compaction factor [10 ⁻⁴]	6.04	-1.33	1.05
Working point Q_x , Q_y	20.43, 8.74	39.20, 15.30	39.37, 15.22
Chromaticity ξ_x , ξ_y	-67.3, -21.0	-95.0, -35.2	-99.0, -33.4
Total gross straight length [m]	79.9	66.3	83.6
Vertical emittance in operation [pm.rad]	~5	10	10
Beam lifetime in operation [h]	~9		9.5

https://www.dora.lib4ri.ch/psi/islandora/object/psi:39635 18

SwissFEL

Linac:

Pulse duration : 1–20 fs Electron energy : up to 6.2 GeV (7 GeV after upgrade) Electron bunch charge: 10-200 pC Repetition rate: 100 Hz, 2 bunches (3 bunches after upgrade) Aramis:

Linear polarization, in-vacuum, variable-gap undulators

First users 2018

Porthos:

Hard X-ray FEL, $\lambda = 0.1-0.7$ nm

Hard X-ray FEL, $\lambda = 0.12 - 1.2$ nm?

Variable-polarization undulators (technology to be decided)

Construction: 2030s

REQUIREMENTS ON THE ELECTRON BEAM

Transverse normalized slice emittan		
predicted:	500	
@ 10 pC: 180 nm	c 400	
@ 200 pC: 430 nm	ce (uu	
measured:	000 mittan	
@ 10 pC: 100 nm	002 U	
@ 200 pC: 220 nm	Z 100	

e:

0

0

Prat et al., PRL 123, 234801 (2019) 21

REQUIREMENTS ON THE ELECTRON BEAM

Slice energy spread of the SwissFEL electron source

energy

SLICE ENERGY SPREAD OF SWISSFEL

- From ASTRA simulations: < 1 keV</p>
- Measured:
 - @ 10 pC: 6.5 ± 0.5 keV
 - @ 200 pC: 15.0 ± 0.3 keV

Eduard Prat et al, PRAB 23, 090701 (2020) 23

EFFECTS INCREASING THE ENERGY SPREAD

Intra-beam scattering (IBS) $\sigma_E \sim \frac{I^{1/2} z^{1/2}}{\beta^{1/4} \varepsilon_n^{3/2}}$

Microbunching instability (MBI)

 $\sigma_E \sim I \beta z$

PSI Rasmus Ischebeck

Eduard Prat; Di Mitri et al, New J. Phys. 22, 083053 (2020) and references herein; Rasmus ⊕ Midjourney 24

MEASUREMENTS OF ENERGY SPREAD

Overall a good agreement!

- but we require to increase IBS strength by a factor of ~2.4
- still, underestimation of energy spread for low peak currents and some R56 settings

ELECTRON SOURCE TEST STAND

TRAVELING WAVE C-BAND GUN

