

Electron-beam based Neutron Sources

Roadmap for Future Accelerators- iFAST WP5.2 Workshop 3rd of September, 2024

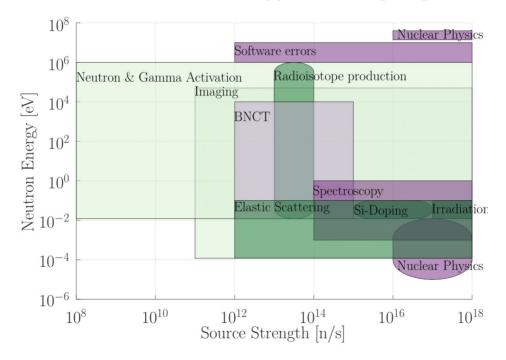
<u>Javier Olivares Herrador</u> ^{1,2}, Lawrence M. Wroe¹, Andrea Latina¹, Walter Wuensch¹, Steinar Stapnes¹, Nuria Fuster-Martinez², Benito Gimeno², Daniel Esperante².

¹ CERN, Meyrin, 1217, Switzerland.

² Instituto de Física Corpuscular (IFIC), CSIC-University of Valencia. Calle Catedrático José Beltrán Martínez, 2, 46980 Paterna (Valencia), Spain

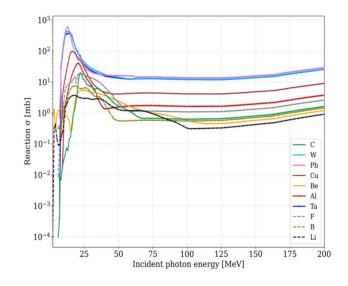
Is an electron linac a suitable driver for neutron production?

To answer this question, I will discuss:


- I. The **necessity** for neutron sources (Introduction)
- II. Neutron production mechanism with electrons
- III. Unmoderated neutron spectrum characterization
- IV. Comparison with the state-of-the-art
- V. Neutron moderation and brightness/brilliance discussion
- VI. VULCAN neutron source

I. Necessity for neutron sources

- Uprising demand: Wide variety of research areas make use of neutrons
 - Not only research: Industrial and medical applications! [1, 2]

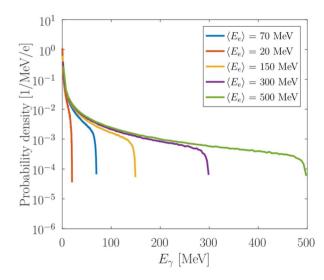

II. Neutron production with accelerators

- Neutron sources migrating from nuclear reactors to accelerator-based facilities [3]
- Hadron-based machines. Direct processes:
 - Spallation
 - Controlled nuclear reaction:

$$p + {}^{7}Li \rightarrow n + {}^{7}Be$$

- Electron-based machines. Indirect process:
 - Bremmstrahlung + Photonuclear reaction

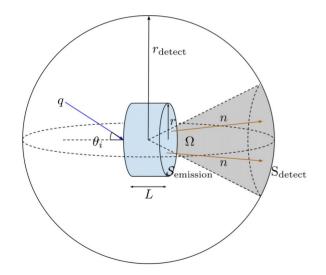
ENDF-v.VIII Photonuclear cross sections.

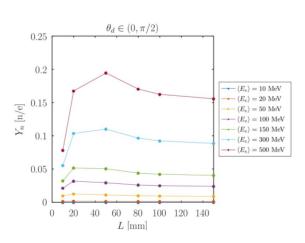

II. Neutron production with accelerators

- Neutron sources migrating from nuclear reactors to accelerator-based facilities [3]
- Hadron-based machines. Direct processes:
 - Spallation
 - Controlled nuclear reaction:

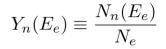
$$p + {}^{7}Li \rightarrow n + {}^{7}Be$$

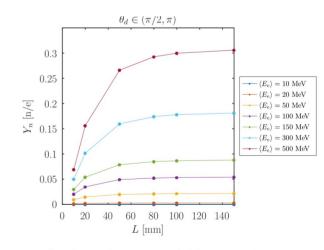
- Electron-based machines. Indirect process:
 - Bremmstrahlung + Photonuclear reaction


Bremmstrahlung spectrum for different electron beams against tungsten.



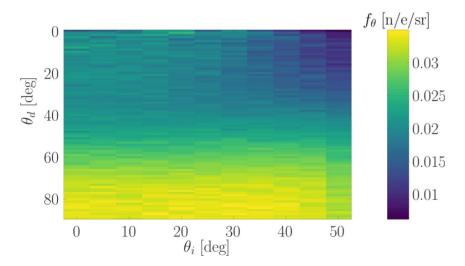
II. Neutron production with electrons

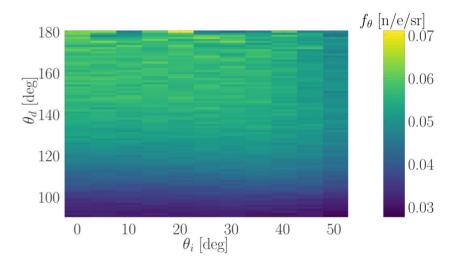

- Single tungsten target where both processes occur
- G4beamlines simulations [4]
 - Optimal dimensions: r = 50mm; L = 80 mm



Neutron production setup

Forward neutron yield at r = 50 mm. $\Theta i = 0$ deg

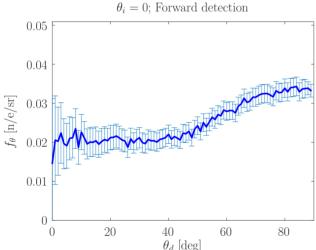

Backward neutron yield at r = 50 mm. $\Theta i = 0$ deg



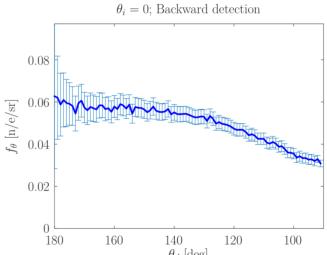
- For the optimized W target, we note:
 - Isotropy in incidence direction θ_i

Forward neutron detection dependency with incidence angle and <Ee> = 500 MeV

$$f_{\Omega}(\varphi, \theta_d; E_e) \equiv \frac{\mathrm{d}^2 Y_n}{\mathrm{d}\Omega}(\varphi, \theta_d)$$
$$f_{\theta}(\theta_d; E_e) \equiv 2\pi \int_0^{2\pi} f_{\Omega}(\theta_d, \varphi) \mathrm{d}\varphi$$

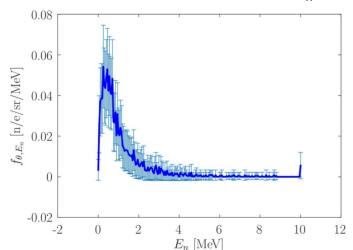


Backward neutron detection dependency with incidence angle and <Ee> = 500 MeV

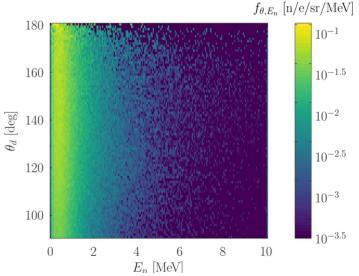


- For the optimized W target, we note:
 - Isotropy in incidence direction θ_i
 - Isotropy in polar detecting angle: Up to 40 deg

Forward neutron detection dependency with incidence angle and $\langle Ee \rangle = 500$ MeV and $\theta_i = 0$ deg.



Backward neutron detection dependency with incidence angle and $\langle Ee \rangle = 500$ MeV and $\theta_i = 0$ deg.



- For the optimized W target, we note:
 - Isotropy in incidence direction θ_i
 - Isotropy in polar detecting angle: Up to 40 deg
 - Maxwellian neutron emission with ⟨E_n⟩ ~ 1 MeV

Energy distribution for different detecting angles. $\langle E_e \rangle = 500 \text{ MeV}$ and $\theta i = 0 \text{ deg}$; $\theta d = 165 \text{ deg}$.

$$f_{\theta,E_n}(\theta_d, E_n; E_e) \equiv \frac{\mathrm{d}f_{\theta}}{\mathrm{d}E_n}$$

Energy distribution for different detecting angles. $\langle E_e \rangle = 500 \text{ MeV}$ and $\theta i = 0 \text{ deg}$.

- For the optimized W target, we note:
 - Isotropy in incidence direction θ_i
 - Isotropy in polar detecting angle: Up to 40 deg.
 - Maxwellian neutron emission with ⟨E_n⟩ ~ 1 MeV
 - Increase of σ_{En} due to high E_n neutrons; little change in ⟨E_n⟩

$\overline{\langle E_e angle \ [{ m MeV}]}$	$f_{\theta} \ [10^{-2} \ \text{n/e/sr}]$	$\langle E_n angle \; [{ m MeV}]$	$\sigma_{E_n} \ [{ m MeV}]$
20	0.056 ± 0.009	0.776	0.625
50	0.41 ± 0.04	0.859	0.741
100	1.02 ± 0.09	0.986	0.973
300	3.4 ± 0.3	1.08	1.15
500	5.8 ± 0.5	1.08	1.17

Energy neutron spectrum details detected at θ_d = 165 deg

IV. High intensity e-linac proposal

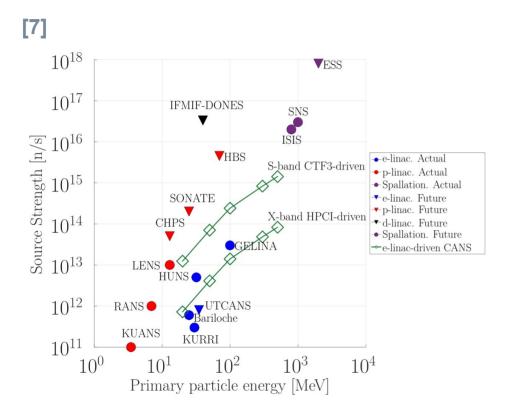
Targeted figure of merit: Source strength

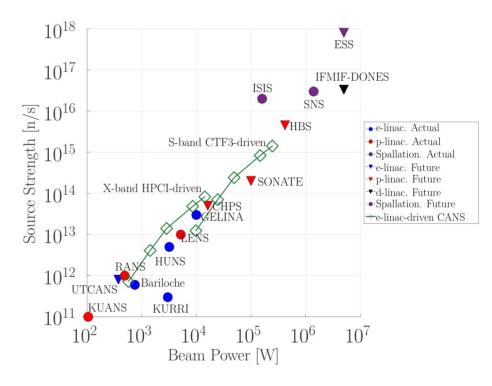
$$I_n \equiv I_{e,av} Y_n$$

Two normal-conducting high-intensity linacs are considered

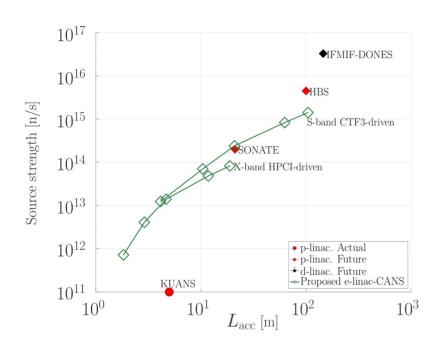
HPCI – linac: S-band Photoinjector + X-band TW structures [5]

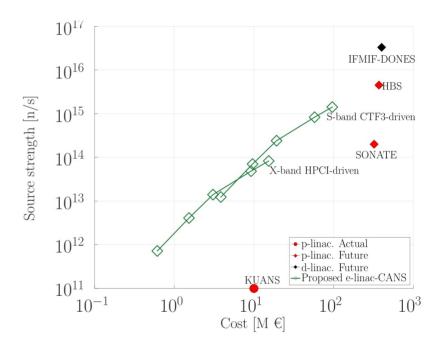
CTF3 drive-beam linac: S-band Thermoionic gun + S-band TW structures [6]


Magnitude	Units	HPCI-linac	CTF3 drive beam linac
\overline{f}	GHz	12.00	3.00
$Q_{ m bunch}$	nC	0.285	2.33
$N_{ m bunches}$		1000	2100
$f_{ m RF ext{-}cycle}$	${ m Hz}$	100	100
$I_{e,\mathrm{av}}$	$\mu\mathrm{A}$	28.50	489.3

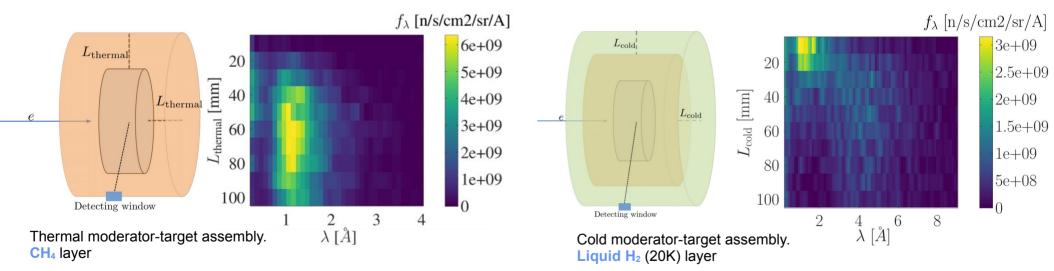

High-intensity compact linac specifications [5, 6]

IV. State-of-the-art comparison





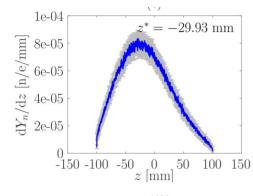
IV. State-of-the-art comparison



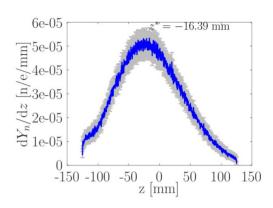
V. Thermal and cold neutron moderation

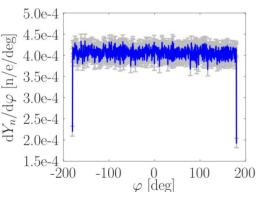
- Material science: Diffractrometry and imaging experiments
 - Require moderated neutrons rich H compounds
- Targeted figure of merit: Average brightness

$$f_{\lambda}(\theta, \lambda; E_e) \equiv \frac{\mathrm{d}^3 I_{\mathrm{n, av}}}{\mathrm{d} S_{\mathrm{emission}} \mathrm{d} \Omega \mathrm{d} \lambda}$$

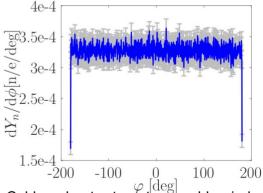


• Optimal dimensions: L_{thermal} = 60 mm; L_{cold} = 25 mm.

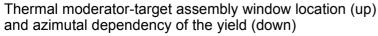




V. Thermal and cold neutron detection

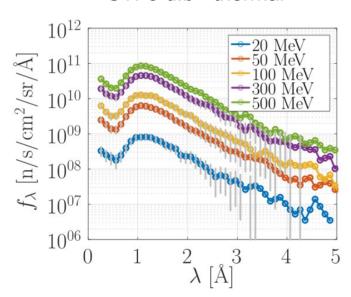


Backward/Lateral maximum emission

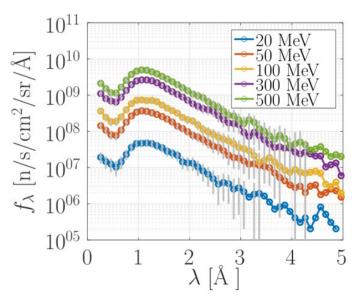


Azimutal isotropy

Cold moderator-target assembly window location (up) and azimutal dependency of the yield (down)



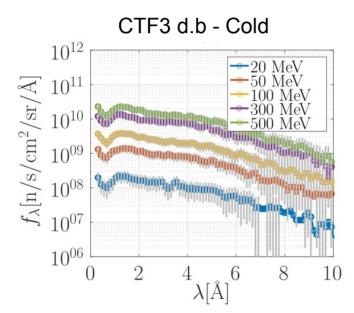
V. Average Brightness

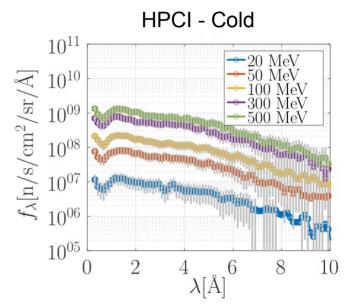

Proportional to electron intensity (CTF3 > HPCI)

CTF3 d.b - thermal

Thermal moderator-target average brightness for different electron energies for CTF3 drive beam linac.

HPCI - thermal


Thermal moderator-target average brightness for different electron energies for HPCI linac.

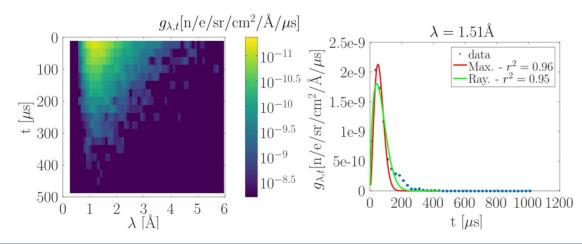


V. Average Brightness

Proportional to electron intensity (CTF3 > HPCI)

Cold moderator-target average brightness for different electron energies for CTF3 drive beam linac.

Cold moderator-target average brightness for different electron energies for HPCI linac.

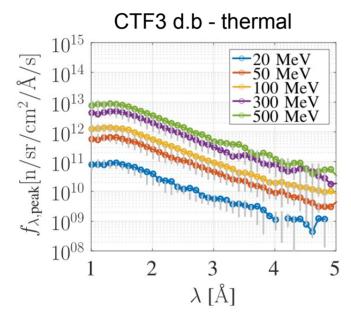


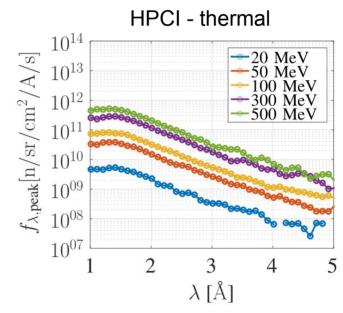
V. Peak brightness

- Time-resolution of the brightness spectrum
 - Convolves electron pulse with neutron response

$$f_{\lambda, \text{ peak}} \equiv \max_{t>0} \left(\frac{\mathrm{d}q_e}{\mathrm{d}t} \otimes g_{\lambda,t} \right)$$
 $g_{\lambda,t} \equiv \frac{^4Y_n}{\mathrm{d}S_{\mathrm{emission}} \mathrm{d}\Omega \mathrm{d}\lambda \mathrm{d}t}$

Cold and thermal neutron responses extend several µs. GHz electron pulses extend few ns

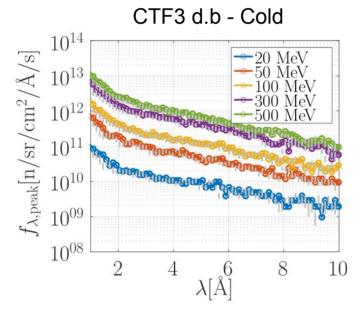


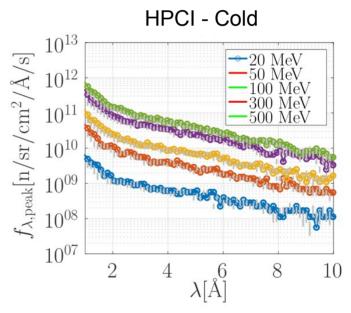


V. Peak brightness

 For the case of electron trains (few ns), the peak brightness is just the normalization of g_λ to the total train charge.

Thermal moderator-target peak brightness for different electron energies for CTF3 drive beam linac.

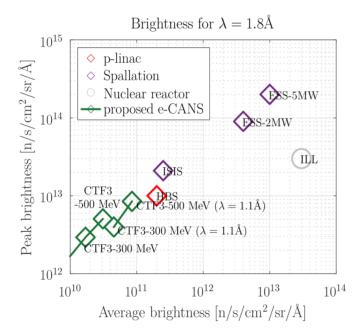

Thermal moderator-target peak brightness for different electron energies for HPCI linac.

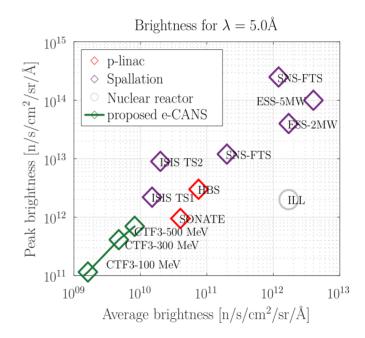


V. Peak brightness

• For the case of electron trains (few ns), the peak brightness is just the normalization of g_{λ} to the total train charge.

Cold moderator-target peak brightness for different electron energies for CTF3 drive beam linac.


Cold moderator-target peak brightness for different electron energies for HPCI linac.



V. Brightness State-of-the-art comparison

[7] [8] [9]

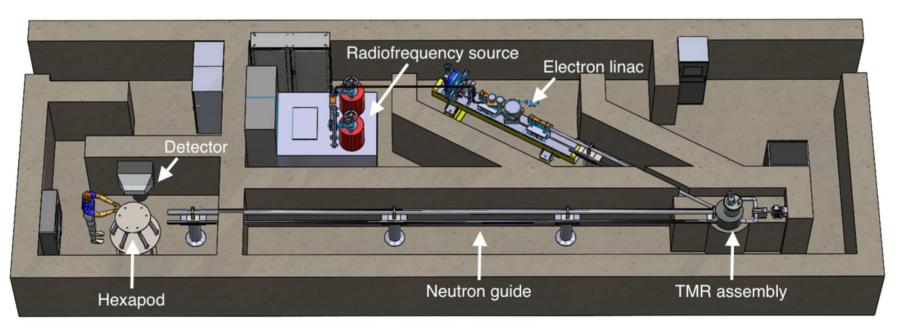
Thermal neutron brightness state-of-the-art.

Cold neutron brightness state-of-the-art.

VI. VULCAN

- Commercial off-the-shelf CANS (compact accelerator-based neutron source) [10]
- VULCAN = Versatile ULtra Compact Accelerator-based Neutron source
- Collaboration between DAES SA and CERN → Industrial implementation

- Targeted applications:
 - In-situ analysis of battery and fuel cell electrodes
 - Measurements of internal stresses of metallic and ceramic components



VI. VULCAN

Parameter	Unit	Value
Energy	MeV	35
Energy spread	${ m MeV}$	< 5
Transverse size	mm	< 5
Transverse Jitter	mm	< 2
Train length	$\mu \mathrm{s}$	<1
Train frequency	${ m Hz}$	100-200

Electron beam requirements.

VI. VULCAN

REQUIREMENTS

- Beam power: > 1 kW
 - Average beam current > 29 μA

- Peak beam Current > 290 mA
- Length: < 10 m

• Cost: < 5 M€

ACCELERATOR DESIGN CHOICES

- Thermoionic gun
 - High average intensities

- High gradient RF cavities (3-12 GHz)
 - TW: Compatible with pulse compressor

- RF power source: klystron
 - Peak power in 5-50 MW

Conclusions

- Neutrons are produced from electron beams by Bremsstrahlung + Photonuclear excitation
- Neutron production is a trade off between beam power, cost and length. Electron-linac-based neutron sources serve as affordable and middle-flux options
 - Eg: VULCAN compact, suited for industrial purposes
- Electron linacs are suitable for multi-purpose facilities since the unmoderated energy spectrum does
 not vary strongly with the initial electron energy
 - Dfferent intensities can be achieved while keeping the same moderating scheme can be adopted for different values of (Ee).

 High-energy and high-intensity electron linacs (like CTF3 drive beam linac at 300, 500 MeV) can provide bright neutron beams comparable to proton-linac-based and spallation sources.

Further work

- Experimental verification of simulations- that is currently in progress at CLEAR.
- Specific target-moderator design to meet the requirements of a particular application
 - Further engineering aspects to be considered
- VULCAN: Beam dynamics and EM simulations ongoing
 - CDR in writing phase.

References

- 1) Y. Kiyanagi, "Neutron applications developing at compact accelerator-driven neutron sources," *AAPPS Bulletin*, vol. 31, pp. 1–19, 2021.
- 2) Compact Accelerator Based Neutron Sources, ser. TECDOC Series. Vienna: INTERNATIONAL ATOMIC ENERGY AGENCY, 2021, no. 1981. [Online]. Available: https://www.iaea.org/publications/14948/compact-accelerator-based-neutron-sources
- 3) J. M. Carpenter, "The development of compact neutron sources," *Nature Reviews Physics*, vol. 1, no. 3, pp. 177–179, 2019.
- 4) T. Roberts, "G4beamline user's guide," *Muons, Inc*, pp. 3468–3470, 2013.
- 5) A. Latina, V. Musat, R. Corsini, L. A. Dyks, E. Granados, A. Grudiev, S. Stapnes, P. Wang, W. Wuensch, E. Cormier, and G. Santarelli, "A compact inverse compton scattering source based on x-band technology and cavity-enhanced high average power ultrafast lasers," in 67th *ICFA Adv. Beam Dyn. Workshop Future Light Sources Conference Proceedings*, 2023, pp. 257–260
- 6) G. Geschonke and A. Ghigo, "Ctf3 design report," Tech. Rep., 2002.

References

- 7) J. Olivares Herrador, L.Wroe, A. Latina, et al. "Neutron production using compat linear electron accelerators". JACoW **IPAC2024** (2024), MOPR93 doi:10.18429/JACoW-IPAC2024-MOPR93
- 8) T. Brückel, T. Gutberlet, J. Baggemann, S. Böhm, P. Doege, J. Fenske, M. Feygenson, A. Glavic, O. Holderer, S. Jaksch et al., *Conceptual Design Report-J"ulich High Brilliance Neutron Source (HBS).* Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag 2020.
- 9) F. Ott, A. Menelle, and C. Alba-Simionesco, "The sonate project, a french cans for materials sciences research," in *EPJ Web of Conferences*, vol. 231. EDP Sciences, 2020, p. 0100.
- 10) L.M Wroe, A.Latina, J. Olivares Herrador et. al. "Accelerator design choices for a Compact Electron-Driven, pulsed neutron source", in JACoW **LINAC2024** (2024).

Thanks for your attention

