High Energy Density Physics:
A brief introduction

Center for Laser Experimental Astrophysics Research

R Paul Drake
University of Michigan

Center for Radiative Shock Hydrodynamics

Department of Atmospheric Oceanic & Space Sciences

Applied Physics Program
Department of Physics

Michigan Institute for Plasma Science and Engineering
Perspectives on plasma physics and HEDP

• The mid-20th-Century approach to plasma physics, as seen in most textbooks, was simple
 – Many particles per Debye sphere often as the definition of “plasma”
 – Quasineutral
 – Only hydrogen
 – Spatially uniform
 – Maxwellian distributions
 – Deviations from spatial uniformity or Maxwellians drive instabilities

• 21st Century plasma physics breaks these and other assumptions
 – An era of creation and control of systems that deviate strongly from the simple cases
 – High-energy-density plasmas are very much a case in point
My goal is to give you some introduction to elements of HED Physics that matter for experiments you may develop

- Features and connections of HEDP
- Key physical elements of HEDP systems
- A few new wrinkles beyond things discussed in my book:
Precursors to high-energy-density physics

• First half 20th Century: Stellar structure
 – Eddington, Chandrasekhar, Schwarzschild, among others

• Mid-20th Century: Nuclear weapons
 – Oppenheimer, Sakharov, Teller, Bethe, Fermi, others
 • Compressible metals!
 – Zel’dovich and Raizer 1966
 • Physics of Shock Waves and High Temperature Phenomena

• Post Mid-20th Century (1960-1980): Inertial fusion origins
 – Nuckolls, Basov, Emmett, others

• I date HEDP as a discipline from about 1979
 – Complex quantitative *physics* experiments became feasible
 – The first user facility program (NLUF) began in 1979

Image credit NNSA Nevada Site Office
We will use this plot to see aspects of high-energy-density physics (HEDP)

- HEDP parameters
- Physics connections
- Astrophysics connections
- Plasma physics connections
 - Particles per Debye sphere
 - Pressure and Fermi degeneracy
 - Strong coupling
Physics connections within and beyond HEDP

Quark-gluon plasmas
Astrophysics connections with HEDP

- Other elements of this connection
 - High Mach number flows
 - Fast shocks
 - Ionizing
 - Strong B fields
 - Radiation matters
 - Plasma hydrodynamics

Curves credit NRC report on HEDP
HEDP systems often have few particles per Debye sphere.

UV Thomson scattering

Be model

Ion Density (cm^-3)

Electron Temperature Te (eV)

100 per Debye sphere

1 per Debye sphere

0.01 per Debye sphere

Image credit David Montgomery
Regime boundaries move as materials change
The pressure often is not nkT

Data from Cauble et al., PRL 1991

~ Gbar shock in Al
HEDP plasmas can be very strongly coupled

\[\Gamma = \frac{|q\phi|}{kT} \]

Electron Temperature
\(T_e \) (eV)

X-ray Thomson scattering

Data from Glenzer & Redmer, RMP 2008
The problems of simulating and of producing these plasmas reveals some of the important physical issues

- Equations from a typical rad-hydro code
 - To see some of the physics issues
- Equations of state and related issues
- Heat conduction
- Hydrodynamic phenomena
- Radiative effects
CRASH like any Radhydro Code must solve conservation equations with source terms

\[
\frac{\partial}{\partial t} \left\{ \begin{array}{l}
\rho \\
\rho u \\
\frac{1}{2} \rho u \cdot u \\
\end{array} \right\} + \nabla \cdot \left\{ \begin{array}{l}
\rho u \\
\rho uu + pI \\
\frac{1}{2} \rho u \cdot u + \mathcal{E} + p \\
\end{array} \right\} = \mathbf{S}
\]

\[
\mathbf{S} = \left\{ \begin{array}{l}
laser\ energy\ deposition \\
elastic\ energy\ deposition \\
electron\ heat\ conduction \\
\mathbf{0} \\
radiation/electron\ momentum\ exchange \\
collisional\ exchange \\
radiation/electron\ energy\ exchange \\
\end{array} \right\}
\]

\[
\nabla \cdot C_e \nabla T_e - S_{re} + S_L
\]

\[
-\rho_e \nabla \cdot u + \nabla \cdot C_e \nabla T_e + \frac{\rho k_B (T_i - T_e)}{M_p A \tau_{ei}} - (S_{re} - S_{rm} \cdot u) + S_L
\]
One gets at equation of state by measuring effects during uniform changes of pressure.

Isentropic Compression Experiments (ICE)*

Magnetically produced Isentropic Compression Experiments (ICE) provide measurement of continuous compression curves
- previously unavailable at Mbar pressures
- presently capable of ~4 Mbar

* Developed with LLNL

Magnetically launched flyer plates

Magnetically driven flyer plates for shock Hugoniot experiments at velocities to ~ 33 km/s
- exceeds gas gun velocities by ~ 4X and pressures by ~ 4-5X with comparable accuracy
- Presently capable of ~ 20 Mbar

Slide credit: Keith Matzen
Flyer plate experiments with lasers and pulsed power uncovered new D_2 EOS features

D. Hicks, et al., PHYS. REV. B 79, 014112

Data from many experiments
The different EOS models for hydrogen directly impact whether Jupiter is predicted to have a central dense core or not

- Outlines show range of models matching Jupiter’s properties within 2σ of observed
- Cannot yet tell whether Jupiter has a core
- The predicted age of Jupiter is also sensitive to the H EOS, which affects luminosity
- Only experiments can validate the correct model

Adapted from slide by Bruce Remington
Just a few years ago, ultra-high pressure phase diagrams for materials were very simple. Melt curves typically followed a Lindeman law and high pressure structures were simple.

Credit: Rip Collins
However, a few recent observations and calculations suggest a very different behavior.

Core electrons have a profound effect on structure and melt at high pressure.

Similar to the beautiful work on Na (Marqués, Neaton and Ashcroft, Hanfland et al, Syassen, K, Gregoryanz, E., J. Raty et al).

Bonev, et al, PRL 2010

Credit: Rip Collins
Traditional View

Insulator

Metal
smearing of electron orbitals

“Sea of Electrons”

Metal
TFD theory

New Understanding

Shaping charge density under compression

Insulator

charge density accumulates
between ion cores

“ Ionic” Bond

Credit: Rip Collins
Hydrodynamics produces things to study but also complicates a lot of experiments.

Simple hydro is easy

Laser beam

Any material

Laser: 1 ns pulse (easy)
≥ 1 Joule (easy)
Irradiance ≥ 10^{13} W/cm^2
(implies spot size of 100 µm at 1 J,
1 cm at 10 kJ)

This produces a pressure ≥ 1 Mbar (10^{12} dynes/cm^2, 0.1 TP).

Momentum balance gives \(p \sim 3.5 I_{14}^{2/3} / \lambda_{\mu m}^{2/3} \) Mbars

This easily launches a shock.
Sustaining the shock takes more laser energy.
The biggest lasers can produce 100 Mbar pressures on mm2 to cm2 areas

Omega
60 beams
30 kJ

Target chamber at Omega laser

National Ignition Facility
192 beams
> 1 Megajoule
The laser creates structure at the target surface

- The laser is absorbed at less than 1% of solid density
- Heat transport is a critical element in correct modeling

Ablation pressure from approximate momentum balance:

\[p \sim 3.5 \left(\frac{I_{14}^{2/3}}{\lambda_{\mu m}^{2/3}} \right) \text{ Mbars} \]

This is a bit low; better calculations replace 3.5 by 8.6

A pressure > 100 Mbars is practical

Many HEDP experiments involve at least one strong shock
- A natural consequence of depositing kJ/mm³ in matter

Strong shocks are useful!
- In Inertial Confinement Fusion
- For equation of state measurements
- As sources of energy or momentum
 - Radiative shocks
 - Isentropic compression
 - Hydrodynamic processes

Data from Ditmire et al. ApSS 2000
Shocks and rarefactions are the building blocks of high-energy-density systems.

Many HEDP experiments have both shocks and rarefactions

SN 1987A

Sketch of Experiment

Radiographic data at 8 ns

0

Position (microns)

400

800

0.1 1 10

Density (g/ cm³)

Plug

Gap

Foam

R.P. Drake, et al.

This experiment to reproduce the hydrodynamics of supernova remnants has both shocks and rarefactions
The other hydrodynamic element of HEDP systems is instabilities

- Spherical divergence

- Multi-interface coupling
 - *Kane et al., PRE 63, 55401 (2001)*

- Multi-mode instability
 - *Muller, Fryxell, and Arnett (1991)*

- 2D simulation of SN1987A

- Longer-term evolution

- Kuranz, several papers
 - *DiStefano, in prep*
Example: shock-clump experiments

- The experiment involves destruction of a spherical clump by a blast wave.

- Early experiments used Cu in plastic; recent experiments use Al in foam.
Observations of the Al/foam case continued until mass stripping had destroyed the cloud

Destruction of clumps in post-shock flow has been a research area with impact

- Experimental results used to help interpret Chandra data from the Puppis A supernova remnant
- Well-scaled experiments have deep credibility

Well scaled experiment

Robey et al., PRL 2002
Hohlraums: radiation-hydrodynamic systems that enable rad-hydro experiments

- Put energy inside a high-Z enclosure
- The vacuum radiation field stays in equilibrium with the resulting hot surface
- One gets temperatures of multi MK because the radiation wave moves slowly through the wall, penetrating few microns

Laser spots seen through thin-walled hohlraum.

Hohlraum with experiment attached on bottom

Our current experiments at the National Ignition Facility use hohlraums to create high pressure

- Inject laser energy into high-Z container
- Result is x-ray source at up to > 3 MK (> 300 eV)

- Small NIF hohlraum shown here
 - Makes > 300 eV with < half of NIF energy

- Drive package producing hydrodynamic instability

- Can vary radiative effects in package
The hydrodynamic instability varies with how hot the shocked material becomes.

- Three shots to date for technique development needed by many programs
 - Backlit pinhole radiography
 - Huntington RSI 2010
 - 300 eV, low-stagnation hohlraum
 - Kuranz A&SS 2011
 - Integrated test shot, Sept. 2012
 - Being analyzed

Hotter hohlraum \rightarrow stronger drive \rightarrow radiative shock \rightarrow changed hydrodynamic instability
One can also do laser-driven radiation hydrodynamics by launching fast shocks through high-Z gas

- An example from UM
 - Irradiate 20-μm-thick Be disk for 1 ns with 4 kJ
 - Drive shock down gas-filled tube at ~ 150 km/s
 - Use a gas of Ar, Kr, Xe

- Result is a strongly radiative shock

- Several related experiments in Europe too
Our experimental program at UM is strongly synergistic with the CRASH Center

- **CRASH code (2D and 3D)**
 - Eulerian, high-resolution Godunov
 - Block adaptive dynamic AMR
 - Level set interfaces
 - Single fluid with Te and Ti
 - Multigroup diffusion radtran
 - Flux limited electron heat conduction
 - Laser package (3D)

- **CRASH uncertainty quantification**
 - Code run sets focused on uncertainties in physics, models and experiments
 - Statistical analysis for prediction

RZ plots of density (top) and temperature (bottom)

CRASH is funded by NNSA Advanced Scientific Computing

X-ray-driven radiative shocks: Simulations: Eric Myra
We extensively test our code

• New program units implemented with unit tests
 – Nightly execution of many unit tests for CRASH and its parent code BATSRUS

• New features implemented with verification tests
 – Daily verification & full system tests are run on a 16-core Mac.
 – > 100 tests cover all aspects of the new feature, including restart, using grid convergence studies and model-model comparison.

• Compatibility & reproducibility checked with functionality test suite
 – Nightly runs. 9 different platforms/compilers on 1 to 4 cores: tests portability

• Parallel Scaling Tests
 – Weekly scaling test on 128 and 256 cores of hera.
 – Reveals software and hardware issues, and confirms that results are independent of the number of cores.
Multiple classes of tests are in our suite

- Hydrodynamics
- Radiation transport
- Radiation hydrodynamics
- Heat conduction
- Simulated radiography
- Material properties (EOS and opacities)
- Laser package
- Unit tests
- Full-system tests
Z pinches also produce high-energy-density conditions

- Today’s biggest is the Z machine at Sandia, when run as a Z pinch (~ 2 MJ of x-rays)
- Z pinches exploit the attraction between parallel currents

Credit: Keith Matsen
The action is at the center of a large though compact structure.
Z pinch x-rays are ideal for photoionization and opacity experiments.

Heavy ion beams can also “cook” matter

- **FAIR at GSI**
 - Facility for Antiproton and Ion Research
 - 4×10^{13} 29 GeV protons in ~10 ns pulses
- **USA**
 - NDCX-II (1.5-3 MeV Li+ sub-ns beam pulse, 1-3 eV target temperature)

High Energy Density user areas
Physics that is not in the code also can matter

• Laser-plasma instabilities
• Hot electron preheat
• Actual radiation transport
Colleagues at Michigan

• HEDP Experimental Program
 – Grad students:
 • Visco, Doss, Huntington,
 • Krauland, DiStefano, Gamboa, Young
 – Many undergrads
 – Staff:
 • Grosskopf, Marion, Klein, Gillespie, Susalla

• Center for Radiative Shock Hydrodynamics (CRASH)
 – Staff: Fryxell, Myra, Toth, Sokolov, van der Holst, Andronova, Torralva, Rutter
 – Grad students: Patterson, Chou, and many others
 – UM Professors: Powell, Holloway, Stout, Martin, Larsen, Roe, van Leer, Fidkowsky, Thornton, Nair, Karni, Gombosi, Johnsen
 – TAMU: Adams, Morel, McClarren, Mallick, Amato, Raushberger, Hawkins
 – Simon Frazer: Bingham

Dr. Carolyn Kuranz
Much depends on our scientific and financial collaborators

Scientific collaborators (partial):

LLE/Rochester – Knauer, Boehly
LLNL – Park, Remington, Glenzer, Fournier, Doeppner, Robey, Miles, Froula, Ryutov, others
LANL – Montgomery, Lanier, Workman, others
Florida State – Plewa
France – Bouquet, Koenig, Michaut, Loupia, others
Britain -- Lebedev
Texas – Wheeler
Arizona – Arnett, Meakin

Financial collaborators:

Joint HEDLP program
(grant DE-FG52-04NA00064)
Predictive Science Academic Alliance Program
(grant DE-FC52-08NA28616)
National Laser User Facility
(grant DE-FG03–00SF22021)
DTRA
Los Alamos Nat. Lab.
Laboratory for Laser Energetics

Past support:
Lawrence Livermore Nat. Lab.
Naval Research Lab.
To End: Forefront fundamental areas of HEDP

- **High energy density hydrodynamics**
 - How do the distinct properties of high energy density systems alter hydrodynamic behavior?

- **Radiation-dominated dynamics and material properties**
 - What are the unique properties of radiation-dominated HED plasmas?

- **Magnetized HED dynamics**
 - How do magnetic fields form, evolve, and affect the properties of high energy density plasmas?

- **Nonlinear optics of HED plasmas**
 - How does high-intensity coherent radiation alter the behavior of high energy density plasmas?

- **Relativistic high energy density plasma physics**
 - How do plasmas with relativistic temperatures or relativistic flows behave?

- **Warm dense matter physics**
 - What are the state, transport, and dynamic properties of warm dense matter?