

Radiation-hydrodynamics simulations of matter at high energy density driven by laser and ion beams

Anna Tauschwitz^{1,2}, Steffen Faik¹, Mikhail M. Basko^{2,3},

Joachim A. Maruhn^{1,2}

¹Goethe University, Frankfurt, Germany ²EMMI, GSI Darmstadt, Germany ³Keldysh Institute of Applied Mathematics (KIAM), Moscow, Russ

³Keldysh Institute of Applied Mathematics (KIAM), Moscow, Russia

EMMI-JINA Workshop Cot. 13th, 2012 GSI Darmstadt, Germany; Oct. 15th-17th, 2012 ND London Center, UK

Outline

- Radiation hydrodynamics code RALEF-2D
- Laser driven hot dense plasmas
 - Homogeneous fully ionized plasma layer
 - Plasma at extremely high temperatures
 - Plasma heating by hohlraum radiation
- Warm Dense Matter Regime

Radiation hydrodynamics code RALEF-2D

Equations of hydrodynamics

The newly developed **RALEF-2D** code is based on a <u>one-fluid</u>, <u>one-</u> <u>temperature</u> hydrodynamics model in two spatial dimensions (either x,y, or r,z):

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot \left(\rho \vec{u}\right) &= 0, \\ \frac{\partial \left(\rho \vec{u}\right)}{\partial t} + \nabla \cdot \left(\rho \vec{u} \otimes \vec{u}\right) + \nabla p &= 0, \\ \frac{\partial \left(\rho E\right)}{\partial t} + \nabla \cdot \left[\left(\rho E + p\right) \vec{u}\right] &= \nabla \cdot \left(\kappa \nabla T\right) + Q_r + Q_{dep}, \\ E &= e + \frac{u^2}{2}, \quad p = p(\rho, e) \end{aligned}$$

 $\nabla \cdot (\kappa \nabla T)$ – energy deposition by thermal conduction (local), Q_r – energy deposition by radiation (non-local), Q_{dep} – eventual external heat sources.

 \mathbf{N}^{\dagger}

Radiation transport

Transfer equation for radiation intensity I_{ν} in the <u>quasi-static approximation</u>:

$$\frac{\partial J_{\nu}}{\partial t} + \vec{\Omega} \cdot \nabla I_{\nu} = k_{\nu} \left(B_{\nu} - I_{\nu} \right), \quad I_{\nu} = I_{\nu} \left(t, \vec{x}, \nu, \vec{\Omega} \right), \quad B_{\nu} = B_{\nu} \left(\nu, T \right)$$

<u>Quasi-static approximation</u>: radiation transports energy infinitely fast (compared to the fluid motion) \Rightarrow the energy residing in radiation field at any given time is infinitely small ! In the present version, the absorption coefficient k_{ν} and the source function $B_{\nu} =$

 $B_{\nu}(T)$ are calculated in the LTE approximation.

Coupling to the fluid energy equation:

$$Q_r = -\nabla \cdot \left(\int d\nu \int \vec{\Omega} I_{\nu} d\vec{\Omega} \right) = \int_{4\pi} d\vec{\Omega} \int k_{\nu} \left(I_{\nu} - B_{\nu} \right) d\nu$$

Radiation transport adds 3 extra dimensions (two angles and the photon frequency) \Rightarrow the 2D hydrodynamics becomes a 5D radiation hydrodynamics !

The RALEF-2D code

The newly developed two-dimensional radiation-hydrodynamics code RALEF-2D is based on:

 <u>hydrodynamics</u> is built upon the CAVEAT-2D (LANL, 1990): multiblock structured quadrilateral mesh, 2nd-order Godunov scheme, conservative, mesh adaptation by applying the ALE (arbitrary Lagrangian-Eulerian) technique

SSI (symmetric semi-implicit) method of E.Livne & A.Glasner (1985), used to incorporate **thermal conduction** and **radiation transport** into the 2D Godunov method

- thermal conduction: 2nd order in space, conservative (M.Basko, J.Maruhn & An.Tauschwitz, J.Com.Phys., 228, 2175, 2009);
- radiation transport: S_n method along short characteristics (n(n+2) photon propagation directions over 4π), 1st order in space, non-conservative, recovers the diffusion limit (optically thick cells)

Importance of the 2-nd order + ALE

Non-linear stage of the Rayleigh-Taylor instability of a laser-irradiated thin carbon foil

RALEF: 1-st order

RALEF: 2-nd order

EOS options in RALEF-2D

The EOS model must provide

 $p = p(\rho, e), \quad c^2 = c^2(\rho, e), \quad T = T(\rho, e), \quad c_v = c_v(\rho, e), \quad z = z(\rho, e), \quad a_{Du} = a_{Du}(\rho, e).$

Analytical EOS models:

- 1. polytropic gas: $p = (\gamma 1)\rho e$, $e = c_V T$, $a_{Du} = \frac{1}{2}(\gamma + 1)$, $c_V, z = const$
- 2. linear EOS: $p = (\rho \rho_0) [c_1 \rho_0 + c_2 | \rho \rho_0 |] + (c_3 \rho_0 + c_4 \rho) e, \quad T = (e e_{cold}) / c_V, \dots$

Tabular EOS models:

- 7. general logarithmic-table (GLT) EOS with different <u>source EOS models</u>: Basko (Z = 1—13, 18, 22,26,28,29,36,40,42, 47, 54,55,74,79,82,83,92) Novikov (THERMOS code (KIAM, Moscow); Z=1,6,13,22,29,74,79) FEOS (any Z, mixtures)
- 8. SESAME tabular EOS

.

The FEOS (Frankfurt EOS) package*

- provides single or two-temperature EOS data (p, ε, s, zion) as function of (ρ, T)
- EOS generation for arbitrary mixtures
- non-equilibrium EOS or Maxwellconstruction

Electronic EOS: Thomas-Fermi statistical model corrected for chemical bonding

Ionic EOS: Interpolations between the Debye solid, normal solid and liquid states

Package structure:

- FEOS library (C/Fortran interface)
- FEOS table generation tool
- SHOWEOS table visualization tool

Input:

 T_{ref} , ρ_{ref} , and bulk modulus K_{ref} at p=0 Critical point T_c, p_c, ρ_c (if known)

* http://th.physik.uni-frankfurt.de/~faik/feos.php

based on the QEOS model (1988), R. M. More et al., Phys. of Fluids 31 and the code MPQeos (1999), A. Kemp et al., MPQ Report 229

Opacity options in RALEF-2D

Here we profit from many years of a highly qualified work at KIAM (Moscow) in the group of Nikiforov-Uvarov-Novikov (the THERMOS code based on the Hartree-Fock-Slater atomic modeling).

Opacity options:

- 1. power law,
- 2. ad hoc analytical,
- 3. inverse bremsstrahlung (analytical),
- 7. GLT tables (source opacities from Novikov)

Laser driven hot dense plasmas

Application at GSI: direct-driven plasma target for ion-stopping measurements

Phelix laser (2 ω): I_L = 5.10¹¹ W/cm², τ_b = 11 ns, focus 1 mm, strongly modulated laser spot!

Solution: irradiation of a foil from both sides by two laser beams.

At GSI: Phelix + nhelix lasers; almost identical beam parameters.

- ✤ By t = 6.5 ns the modulation of < ρx >drops and the plasma column becomes fully ionized to Z_{ion} = 6
- ✤ A strongly non-uniform direct laser beam produces a uniform plasma column

MM

Nuclear **E**xcitation by **E**lectronic **T**ransition (NEET) experiment (PHELIX proposal P059) Spokesperson: F. Hannachi, CENBG, France

Goal: study nuclear excitation and de-excitation rates depending on plasma conditions

- Experiment: UNILAC ions to create isomers
 - PHELIX laser to heat the target and to excite the isomers using NEET

 \Rightarrow temperatures of a few keV must be achieved

◆ 10¹⁸ highly ionized (Z_{ion} ≥ 26) ions at a plasma temperature above1 keV will be generated
◆ the "cup" helps to increase the number of ions by a factor 1.5-2 over a planar target

Application at GSI: ion-stopping measurements in plasma

Experimental setup

Simulation setup

0.1 mm

PHELIX laser (2ω)

Deposited energy: $E_l = 180 \text{ J}, \tau_h = 1.2 \text{ ns}$ Gaussian spot, FWHM = 200 µm

Infinite extension along z-direction is assumed In the 2D configuration: E^{2D} = 122.8 J/mm

JOHANN WOLFGANG

MM

Plasma temperature, T and radiation temperature, T_r in the hohlraum during the laser pulse.

"Ray-effect" due to discretization of the angular dependence of $I_{\nu}(\vec{x}, \Omega)$ in the radiation transport algorithm (drawback of the S_n method).

MM

Radiation emitted by the hohlraum is utilized to heat a low-Z foam

Hot laser spot \Rightarrow strongly non-Planckian spectrum

The energies of the X-rays emitted out of the hohlraum go well together with the absorption coefficient of carbon.

JOHANN WOLFGANG COETHI

FRANKFURT AM MAIN

JOHANN WOLFGANG GOETHE

FRANKFURT AM MAIN

- ✤ Indirect plasma heating by means of hohlraum radiation allows to create a uniform plasma state of partially ionized carbon (Z ≈ 3.8) at temperatures T ≈ 20 eV.
- Shock wave from the foam support can be eliminated by slight change of the setup.

MM

Warm Dense Matter Regime

General problem in hydrodynamic simulations

In the metastable region between the binodal and spinodal we have a double-valued EOS !

Dilemma: which of the two should one follow in hydrodynamic simulations?

Our recipe: follow metastable EOS and use the criterion for explosive boiling

Local criterion of explosive boiling

Total fractional volume of overcritical bubbles = equilibrium value ξ_v

$$NV_c \left(\frac{3\sigma}{\pi m}\right)^{1/2} \left[\frac{d}{dt} \left(-\frac{W_c}{T}\right)\right]_{Lag}^{-1} \exp\left(-\frac{W_c}{T}\right) = \xi_v \quad V_c \equiv \frac{4\pi}{3} r_c^3, \quad T_2 \text{ from } \varepsilon(\rho, T_1) = \varepsilon_{eq}(\rho, T_2)$$

The criterion of explosive boiling is fulfilled \Rightarrow Instantaneous irreversible transition to the equilibrium EOS at fixed density and specific internal energy ($B_1 \rightarrow B_2$).

V (T2)

 $V_{1}(T_{2})$

Application to a uniform planar layer of SiO₂

Example: thin SiO₂ foil heated quasi-isobarically by the ion beam (spatially uniform ρ , p, T)

Start with metastable EOS \rightarrow switch to equilibrium EOS at t_b = 52.95 ns (3923 K)

Evolution after boiling:

- \diamond The boundary relaxes to p_0
- The center elements follow for about 20 ns the binodal until the rarefaction wave arrives (c_s drops strongly, c_{s2}/c_{s1} < 0.1)</p>

MM

Application to a uniform planar layer of SiO₂(2)

Adequate modeling of the explosive boiling is indispensible for planning and interpretation of experiments in the two-phase liquid-vapor region.

• RALEF-2D has become a powerful radiation hydrodynamics code in terms of speed, accuracy and variety of solvable problems.

• Wide range of problems regarding radiation-dominated plasmas can be addressed using RALEF-2D.

• A solution for the double-valued EOS in the two-phase region has been worked out which is prerequisite for reliable hydrodynamic simulations in the WDM regime.

