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beam duration, average energy, energy spread, pulse 

intensity adjusted for each experiment

 



Beam exists in 6-D position-momentum phase space

Incomplete information: measure 2-D projections or reconstruct based on 

perturbations of upstream controls (e.g. tomography)

Dozens-to-hundreds of controllable variables and hundreds-of-thousands to 

monitor 

Increasingly dynamic control needed during experiments
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A. Marinelli, IPAC’18A. Marinelli, et  al., Nat. Commun. 6,  6369 (2015)

Detailed beam phase space customization required for 

different experiments

Nonlinear, high-dimensional optimization/control problem



J. Qiang, et al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 

cores at the NERSC”
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J. Qiang et al, PRAB (2017)

A. Marinelli, IPAC’18
A. Marinelli, et  al., Nat. Commun. 6,  6369 (2015)

Rapid beam 

customization

Achieve new 

configurations + 

unprecedented beam 

parameters 

Fine control to 

maintain

stability within 

tolerances 

wide spectrum of tuning needs



moreassumed knowledge of machine

Model-Free 

Optimization

Observe performance change after a 

setting adjustment

 → estimate direction or apply 

heuristics toward improvement

Model-guided 

Optimization

Update a model at each step

 → use model to help select the next 

point

Global Modeling + 

Feed-forward Corrections

 

→provide initial guess (i.e. warm start) 

→ provide insight to operators

→model-based control

gradient descent

simplex

ES

Bayesian optimization

reinforcement learning

ML system models +

inverse models

Tuning approaches leverage different amounts of data / previous knowledge

 → suitable under different circumstances
 
 

J. Kirschner

less

General strategy: start with sample-efficient methods that do well on new systems, then build 

up to more data-intensive and heavily model-informed approaches. 
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Sextupole tuning at FACET-II

2x efficiency of acceleration in plasma

Longitudinal phase space 

tuning on LCLS

Hanuka et. al. PRAB , 2021Duris et. al. PRL , 2020

FEL pulse energy tuning at LCLS

(w/ physics-based kernel)
Loss rate tuning at SPEAR3

(w/ physics-based kernel)

Emittance tuning for LCLS-II injector

target

Many successes with Bayesian Optimization (+ algorithmic improvements)

Algorithms being implemented/distributed in Xopt: https://github.com/xopt-org/Xopt

Better than hand-tuning solution

Tuning on monochrometer signal

Comprehensive review of BO for accelerators: R. Roussel, et al., PRAB (2024) https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801 

https://github.com/xopt-org/Xopt
https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801
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→ Design Gaussian Process kernel from expected correlations between inputs (e.g. quadrupole magnets)

→ Take the Hessian of model at expected optimum to get the correlations  

vertical emittance

 tuning @SPEAR3

No measured data needed ahead of 

time, just a physics model of system

J. Duris et al., PRL, 2020 

A. Hanuka, et al., PRAB, 2021

FEL tuning @LCLS

Physics-Aware Bayesian Optimization: Correlated Kernel

Including correlation between inputs enables increased sample-efficiency and results in faster optimization
→ kernel-from-Hessian enables easy computation of correlations even in high dimension



Addressing Magnetic Hysteresis with Differentiable Physics Models

Learn both 

hysteresis 

properties and 

beam response 

simultaneously

Differentiable physics model + Gaussian process enables in-situ characterization of hysteresis and faster magnet tuning

BO on sys. with 

hysteresis
Hysteresis BO 

on sys. with 

hysteresis

R. Roussel, et. al. Phys. Rev. Lett. 128, 204801



Roussel et. al. PRAB 2021Multi-Objective Bayesian Optimization

Simulation study with the AWA injector

Experimental demo with the LCLS injector

Multi-objective Bayesian optimization enables efficient, direct examination of experimental tradeoffs  

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.24.062801


Optimization with Virtual Objectives

• Many objectives require layered scans or optimization problems

• Instead learn model from scratch online and do scan on model

• Bayesian Algorithm Execution (BAX) → 20x speedup in tuning

simulation

experiment

BAX enables a paradigm shift in how optimization problems with complicated scans or other indirect measurements are handled

model is learned

 on-the-fly

Convergence of beam size prediction error 

gives practical indicator of convergence

20x faster tuning than standard BO, 

equivalent or better solution than 

hand-tuning

S. Miskovich, MLST, 2024

Quadrupole
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Emittance

device scan observable
computed

 objective

10.1088/2632-2153/ad169f


Roussel, et al. IPAC 2023 THPL164 

Common software tools (Xopt, Badger) enables rapid transfer between facilities and algorithmic progress

Also working to link accelerator and photon beamline tuning

We welcome collaborators

 → contact us!https://github.com/xopt-org/Xopt

https://accelconf.web.cern.ch/ipac2023/pdf/THPL164.pdf
https://github.com/xopt-org/Xopt


Trust Region Bayesian Optimization

S. Maria Liuzzo, ICALEPCS 2023, MO3AO01

Trust region BO enables efficient extension to very high dimensional problems with narrow ranges of stability

ESRF for lifetime optimization:

• 50x faster than human operator
  

• Achieved best lifetime yet observed at 

ESRF (41 hours)
 

• Now used in regular operation

Badger GUI

https://accelconf.web.cern.ch/icalepcs2023/papers/mo3ao01.pdf
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Combining BO with Warm Starts from Online Physics Models



Leveraging Online Models for 

Faster Optimization

Combining existing models with BO 

→ important for scaling up to higher dimension
 

Even prior mean models with substantial inaccuracies 

provide a boost in optimization speed

Prototyped on LCLS injector

variables: solenoid, 2 corrector quads, 6 matching quads

objective: minimize emittance and matching parameter

regular Bayesian

 optimization

model prediction returns to prior

prior mean from 

models with different 

fidelity

https ://arxiv.org/abs/2211.09028 https ://arxiv.org/abs/2403.03225  

https://arxiv.org/abs/2211.09028
https://arxiv.org/abs/2403.03225


Finding Sources of Error Between Simulations and Measurements

Many non-idealities not included in physics simulations:

static error sources (e.g. magnetic field nonlinearities, physical offsets) 

time-varying changes (e.g. temperature-induced phase calibrations)

Want to identify these  to get better understanding of machine performance 

àML model allows fast / automatic exploration of error sources in high dimension

10

First studies look promising à current/future work to investigate robustness and extend to larger subsystems + more complicated setups

injector
settings

laser image

adaptable calibration
transforms

longitudinal/
transverse phase space

Without 
calibration

With calibration

Inputs
Laser radius
Laser spot sizes
Pulse length
Charge
Solenoid
L0A phase 
L0B phase
SQ quad
CQ quad
6 matching quads

Outputs
Beam size (x,y)
Emittance (x,y)
Bunch length

output beam
scalars

ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 

solenoid strength found 

automatically with 

neural network model 

(trained first in 
simulation, then 

calibrated to machine)

frozen neural network 
layers trained on 
simulation

Speed and differentiability of ML models enables rapid identification of error sources between 
idealized physics simulations and real machine 
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ML modeling enables rapid identification of error sources between idealized physics simulations and real machine
à path toward gaining new insights into machine performance (could also help inform future designs)

Example: calibration 
offset in injector 

solenoid strength found 

automatically with 

neural network model 

(trained first in 
simulation, then 

calibrated to machine)

frozen neural network 
layers trained on 
simulation

Differentiable simulations allow direct learning of calibrations while being constrained by the expected physics

J.P. Gonzalez-Aguilera

Same approach can be used with differentiable physics simulations

https://accelconf.web.cern.ch/ipac2023/pdf/WEPA065.pdf

Present limitations:

• Nonlinear collective effects 

(space charge, CSR)

• Computational scaling

• Expand to full EM 

cavity/magnet descriptions?

→ Looking to community 

to expand tools for 

differentiable sims! 

(e.g. Cheetah, SciBmad)



Embedding surrogates in tracking calculations

20

Trained fully-connected, feed-

forward  network

Trained on >1M samples from 10k 

different initial beam distributions 

(generated from start-to-end LCLS 

sims with random linac settings)

Coherent Synchrotron Radiation (CSR) impacts beam quality (critical for Free 

Electron Laser performance)

CSR computationally intensive to simulate, even for 1D effect

 

Solution: replace wakefield calculation in tracking step with a neural network to gain 

both speed and differentiability

Edelen, et al., IPAC’22 https://accelconf.web.cern.ch/ipac2022/papers/wepoms013.pdf



Embedding surrogates in tracking calculations

21

Coherent Synchrotron Radiation (CSR) impacts beam quality (critical for Free 

Electron Laser performance)

CSR computationally intensive to simulate, even for 1D effect
 

Solution: replace wakefield calculation in tracking step with a neural network to gain 

both speed and differentiability

→ Accurately replicates main effect (better than excluding CSR)

→ 10X faster than running with 1D CSR routine

Edelen, et al., IPAC’22 https://accelconf.web.cern.ch/ipac2022/papers/wepoms013.pdf



Multi-fidelity Model Calibration

22

N=

2e4

Number of Particles (N) 2e4 2e5 2e6

Space Charge Grid Size 16 32 64

Execution time ~1 min ~2.5 min ~25 min

σx  (um) 1026 1018 1017

σy  (um) 654 623 614

Norm x emit (um) 9.26 8.87 8.77

Want to efficiently 
probe possible model 
errors and obtain 
uncertainty estimates.
 

Multi-fidelity Bayesian 
optimization:

• Learn correlations 
between different 
model fidelities

• Use BO to select 
model fidelity and 
next optimization 
variables

N=

2e5

N=

2e6

E. Cropp



Distribution Shift is a Major Challenge in Particle Accelerators

Many sources of change over time:

• Deliberate changes in beam configuration (e.g. beam charge)

• Unintended drift in initial conditions (including in unobservable 

variables), diurnal temperature/humidity changes, etc

• Time-dependent action of feedback systems

Reliable uncertainty estimates and model adaptation methods are key for putting online models to use operationally

unseen region

  Example: beam size prediction and uncertainty estimates under drift from a neural network 

Uncertainty estimate from neural network ensemble does not cover prediction error, but does give a qualitative metric for uncertainty 
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Better Data Sampling:

Bayesian Exploration

adaptive sampling

learning 
constraints

proximal
biasing

R. Roussel et. al. 
Nat. Comm. 2021
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Enables sample-efficient 

characterization of high-dimensional 

spaces, while respecting both input 

and output constraints

Efficient 

Characterization with 

Bayesian Exploration

Enables sample-efficient 
characterization of high-dimensional 

spaces, while respecting both input and 
output constraints



Bayesian Exploration for Efficient Characterization

• Used Bayesian Exploration for efficient high-dimensional characterization (10 
variables) of emittance and match at 700pC: 2 hrs for 10 variables compared 
to 5 hrs for 4 variables with N-D parameter scan (~8x faster)
  

• Data was used to train neural network model of injector response predicting x-
y beam images. GP ML model from exploration predicts emittance and match. 
 

• Example of integrated cycle between characterization, modeling, and 
optimization → now want to extend to larger system sections and new setups

Use of Bayesian exploration to generate training data was sample-efficient, reduced burden of data cleaning, and resulted in a well-
balanced distribution for the training data set over the input space. ML models were immediately useful for optimization.
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transverse phase space

Automatic Exploration

(constrained to useful values 

of emittance and match)

Comprehensive ML 

Models of Injector

Setting changes on 10 variables (solenoid, bucking coil, corrector quads and matching quads)

x-y emit, 

match, 

and 

beam 

images

FACET-II Injector

x

y

https ://www.nature.com/articles/s41467-021-25757-3



Goal: Full Integration of AI/ML Optimization, Data-Driven Modeling, and Physics Simulations

Data 

processing

Data 

processing

FACET-II LCLS

Data 

processing

Data 

processing

FACET-II LCLS

Cluster Compute
(CPU,GPU)

Working on a facility-agnostic ecosystem for online simulation, ML modeling, and AI/ML driven characterization/optimization

Will enable system-wide application to aid operations, and help drive AI/ML development (e.g. higher dimensionality, robustness, 

combining algorithms efficiently)

Making good progress toward this vision with open-source, modular software tools



Ecosystem of modular tools (can use independently)

Digital Twin Infrastructure

Substantial progress on deploying ML and Physics-based models and integrating with HPC in a portable way

Deployment on HPC

• Live physics simulations and ML models now linked between 

SLAC’s HPC system (S3DF)  and control system  

→ run with Kubernetes and Prefect
 

• Working with NERSC to swap between S3DF/NERSC resources
 

• Beginning work on MLOps aspects that will be used in continual 

learning research
 

• SLAC is part of CAMPA project for end-to-end virtual 

accelerators → working on shared set of 

tools/standards/interfaces

LUME – simulation interfaces/wrappers in Python
 

lume-model – wraps ML models, facilitates calibration
 

distgen – flexible creation of beam distributions
 

Integration with MLFlow for MLOps
 

https://www.lume.science/ 
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Summary/Conclusions

• Many successes with Bayesian optimization and 

variants → many ways of incorporating system models 

for improved performance in BO

• Have deliberately targeted ML-based approaches 

that don’t require large amounts of data and are 

readily transferrable between systems

• Online system models that combine physics 

simulations and ML being deployed→ scaling up 

toward comprehensive digital twins 

• Differentiable physics simulations including nonlinear 

collective effects and hybrid ML models are a major 

area of need (e.g. Cheetah, SciBmad)

• Deployment infrastructure and shared community 

software tools are essential

• Increasingly working to combine system models and 

online optimization to enable more detailed control
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Thanks for your attention!

Any questions?

Thanks to the core team 

at SLAC working on 

various AIML 

technologies and 

infrastructure!

Thanks to many other 

collaborators not shown!



Backups



Reinforcement Learning

Variety of high dimensional signals for states, objectives

time

e
n
er

gy

x-y laser
120 Hz FEL pulse intensity

Nonlinear instability → sensitive to dynamic processes

 (e.g. trajectory feedback, cooling, LLRF control)

RL can help address a different set of needs than BO:

• Use global machine information, more historical data

• Treat as a dynamical system (many time-dependent 

processes/feedbacks + drift)

• Address demands for fast dynamic control from users
  

Suitability of accelerator tuning problems for RL: 

• Many variables, multi-modal signals (images, scalars, time series)

• Continuous state/action spaces (similar to robotics)

• Have physics models/simulators for many problems



Reinforcement Learning

• FEL is sensitive to focusing, trajectory; 

perturbing beam/feedbacks too much 

results in beam losses
•  

• Using data-driven surrogates and 

differentiable sims to train agents
  

• Iteratively add more data, targets and 

variables:

• Photon pulse intensity

• Beam phase space images, spectra

• Focusing magnets, RF cavities, undulator

• Similar accelerator designs may enable 

facility-agnostic agents?

Starting to explore with EuXFEL
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~28 focusing magnets for FEL pulse intensity

(many more variables to include: steering, rf cavities, undulator, drive laser)



E. Cropp et al., in preparation

Hand-tuning in seconds vs. tens of minutes
 

Boost in convergence speed for other algorithms

Can work even under distribution shift

• Round-to-flat beam transforms are challenging to optimize 
→ 2019 study explored ability of a learned model to help

• Trained neural network  model to predict fits to beam 
image, based on archived data

• Tested online multi-objective optimization over model (3 
quad settings) given present readings of other inputs

• Used as warm start for other optimizers

• Trained DDPG Reinforcement Learning agent and tested on 
machine under different conditions than training

Example: Warm Starts from Online Models



Sample Number (Time Ordered)

Neural network with quantile 

regression predicting FEL pulse 

energy at LCLS

unseen 

regions

test 

data

L. Gupta

BNN Predictions

ASTRA Simulation

White area 

– values 

left out of 

training

A. Mishra et. al. , PRAB, 2021
LCLS injector transverse phase space  (ensemble)

Scalar parameters for the 

LCLS-II injector

(Bayesian neural network)

Essential for decision making under uncertainty (e.g. safe opt., intelligent sampling, virtual diagnostics) 
Current approaches 

• Ensembles

• Gaussian Processes

• Bayesian NNs

• Quantile Regression

longitudinal phase space

(quantile regression + ensemble)

In-distribution

Out-of-distribution 

O. Convery, et al., PRAB, 2021

Uncertainty Quantification / Robust Modeling





Deployment: Xopt and Badger

Many optimization algorithms

- Genetic algorithms (NSGA-

II, etc.)

- Nelder-Mead Simplex

- Bayesian Optimization

- Bayesian Exploration

- Trust-region BO

- Learned output constrained 

BO

- Interpolating BO

https://christophermayes.github.io/Xopt/ 

https://christophermayes.github.io/Xopt/algorithms/ 

→Has been used for online optimization at numerous facilities (LCLS/LCLS2, FACET-II, ESRF,  AWA, NSLS-II, FLASHForward) 

→ Working to make interoperable with other software (e.g. Gymnasium)

https://github.com/slaclab/Badger 

User interface, I/O with machine

Xopt: houses optimization algorithms

Python interface

https://christophermayes.github.io/Xopt/
https://christophermayes.github.io/Xopt/algorithms/
https://github.com/slaclab/Badger


ESRF loss rate reduction

LCLS FEL pulse energy

• Can specify constraints on settings and outputs (e.g. avoid dark current, beam losses, etc)

• Trust-region method allows conservative high-dimensional tuning (e.g. used >100 sextupoles at ESRF)

• Working on integrating global model priors → not learning from scratch each time

• Working to make compatible with RL problems + gymnasium

0.04 to 0.14 mJ in SXR → 15% better than hand-tuning

41hr → best lifetime observed ever (in record speed of 15 minutes)

injection efficiency improved by 5%



• ML models trained on detailed physics simulations with nonlinear collective effects

• Accurate over a wide range of settings → calibrate to match machine measurements

• Provide initial parameters for downstream model

prototyping 

optimization

algorithms

In Regular Use: Injector Surrogate Model at LCLS 

ML models trained on simulations and measurements have enabled fast prototyping of new optimization algorithms, facilitated rapid model 
adaptation under new conditions, and can directly aid online tuning and operator decision making

Automatic adaptation of models and identification of sources of 

deviation between simulations and as-built machine

interactive model widget 

and visualization tools

ML model matches 

simulation under 

interpolation 

Simulation and ML model trained 

on it are qualitatively similar to 
measurements under interpolation 

(setting combinations reasonable 

distance from training set)



nonlinear effects / 

instabilities

fluctuations/noise

(e.g. initial beam conditions)

hidden variables / sensitivities

reality

vs.

simulation

drift over time 

F. Wang

many small, compounding 

sources of uncertainty

J. Qiang, et  al., PRSTAB30, 
054402, 2017

MeasurementSimulation

“10 hours on thousands of 

cores at the NERSC”

computationally expensive simulations



Roussel et. al. Nat. Comm. 2021

Efficient, safe optimization algorithms

Output constraints learned on-the-fly

ground truth validity  probability

Combining physics and ML for better performance
ML-enhanced diagnostics

Rapid analysis/virtual diagnostics

Shot-to-shot predictions at beam rate

Online prediction with physics sims 

and fast/accurate ML system models

Adaptation of models and identification of sources of 

deviation between simulations and as-built machine

Challenging problems: e.g. sextupole tuning

Current Areas of AIML R&D for Accelerators at SLAC

AI/ML enables fundamentally new capabilities across a broad range of applications → highly promising from initial demos.

Hysteresis-aware optimization

BO on sys. with 
hysteresis

Hybrid BO on 
sys. with 

hysteresis

Adhere to constraints and balance multiple targets

C. Emma, et al.  – PRAB 21, 112802 (2018)

Many solutions put into reusable open-source software (e.g. Xopt/Badger) demoed at many facilities

Roussel et. al. PRL. 2022

Differentiable simulations + ML for 6D 

phase space reconstruction

Roussel et. al. PRL. 2023

Anomaly detection

(1) Developing new approaches for accelerator optimization/characterization and faster higher-fidelity system modeling, (2) developing 
portable software tools to support end-to-end AI/ML workflows, (3) helping integrating these into regular use

Broad Research Program at SLAC in AI/ML for Accelerators

https://github.com/ChristopherMayes/Xopt


Community development of re-usable, 

reliable, flexible software tools for 

AI/ML workflows has been essential to 

maximize return on investment and ensure 

transferability between systems
  

 Modularity has been key: separating 

different parts of the workflow + using 

shared standards

Modular, Open-Source 

Software Development

Different software for different tasks:
 

Optimization algorithm driver (e.g. Xopt)
 

Visual control room interface (e.g. Badger)
 

Simulation drivers (e.g. LUME)
 

Standards model descriptions, data formats, 

and software interfaces (e.g. openPMD)
 

Online model deployment (LUME-services)

Online Impact-T simulation and 

live display; trivial to get running 

on FACET-II using same software 

tools as the LCLS injector 

LCLS

FACET-II

standard

data 

format

LUME

More details at https://www.lume.science/ 

Simulation

Optimizer

Modular open-source software has been essential for our work.  

https://www.lume.science/


Further Automation

• Chaining together automation of 

sub-tasks and measurements

• RF /laser timing scans, beamline 

alignment, smart sampling for 

measurements

Ideal steering value

Poor

steering value

Automated beam alignment

→ 20-30 minutes by hand

→ 5 minutes with BAX

Automated determination of gun phase with BAX

Beam bounding box penalty

Smart sampling

 for emittance measurements 

with Bayesian Exploration

R. Roussel, D. Kennedy



Incorporating Constraints
We want to ensure during measurements that the beam stays on screen
→ Define a smoothly varying penalty function to act as a constraint

Define a circular ROI
Measure maximum distance from the 

ROI center to bounding box corners

𝑟𝑅𝑂𝐼

𝑟𝑚

𝑝 = 𝑟𝑚 − 𝑟𝑅𝑂𝐼

Constraint:  𝑝 ≤ 0 

Other examples: Beam losses, dark current production, emittance, etc.

Gardner et. al. ICML 2014See R. Roussel et al., PRAB (2024) https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801 

https://journals.aps.org/prab/abstract/10.1103/PhysRevAccelBeams.27.084801


Physics Sim: 

~95k core hrs, 131k sims

2246 cores, 36 hours

Neural Network: 

~2 mins on a laptop

(500 sims for training)

Smooth interpolation 

Example 𝝈𝒙 surface from 2D scan, LCLS-II Injector

Surrogate-boosted design optimization 

Warm starts for 

optimization

ML

Inverse 

Model

L1S phase

BC2 peak current

Local 

optimizer

Suggested 

initial 

settings

A. Scheinker, A. Edelen, 

et al, PRL, 2018

A. Edelen

 et al., PRAB, 

2020

Deconvolution Layers

Cavity phase

Solenoid field

Bunch Charge

N Fully Connected 

Hidden Layers

… N - 2 …

Scalar outputs

VCC Size

Convolution Layers

# Particles

Mean X, Y, Z

Beam Kinetic Energy

Norm. Emittances

Beam Sizes

Mean X’, Y’, Z’

Scalar inputs

Include high-dimensional input information à better output predictions

L. Gupta, et al, 

MLST, 2021

A. Edelen et al., NeurIPS 2019
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