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(Prehistorical) Introduction

As a young graduate student, because I expressed some interest in
mathematics, I was asked to cross check a set of very complicated
formulas for aberrations (higher order terms) of particle optical systems

Such formulas were the State of the Art to compute aberrations of

inhomogeneous bending magnets, electrostatic deflectors, and their fringe
fields, etc etc

Some of the prominent codes were Transport, GIOS, TRIO, MaryLie, etc

But nobody was quite sure if these formulas were really all correct
(although as we saw later, amazingly they mostly were).

My problem was, yes I liked Math, but I didn’t have all that much stamina
(or less forgivingly, I was a bit lazy)

So how do I get out of this — I started to try out some Computer Algebra
tools. Unfortunately, they quickly turned out to be hopelessly slow and
underpowered.



What’s the Problem to be Solved?

The problem 1s conceptually simple: there 1s an iterative order-by-order
scheme to calculate higher orders in terms of time integrals of already
known lower orders.

But: The difference between theory and practice 1s larger in practice than in
theory. The complexity of the problem is horrendous, it grows
exponentially with order.

It was universally believed that higher than third order 1is practically
impossible to derive.



Maps as Taylor Series

"The determination of terms of order higher than fourth is very labori-
ous in all but the simplest cases. For this reason, algebraic calculations
are usually restricted to the domain of the Seidel theory, supplemented
where necessary by ray tracing’ .

Born-Wolf, Principles of Optics, Pergamon 1959
Some Power Series Particle Optics Codes:



What’s the Problem to be Solved?

The problem 1s conceptually simple: there 1s an iterative order-by-order
scheme to calculate higher orders in terms of time integrals of already
known lower orders.

But: The difference between theory and practice 1s larger in practice than
in theory. The complexity of the problem 1s horrendous, it grows
exponentially with order.

It was universally believed that higher than third order is practically
impossible to derive.

So I started to read up more on Computer Algebra. I found out that to solve
integrals, ODESs, and PDEs, since they can’t use “limit of x going to zero”
of something or other, they use something called Differential Algebra

Using these tricks, I built my own Differential Algebra-based computer
algebra package, and computed analytic formulas for all common particle
optical elements up to order five

They were directly output in dense code: the worst one, the
inhomogeneous electrostatic deflector, had something like 20,000 lines of
code.



Key Idea: treat derivatives and
integrals like algebraic functions
O and their inverse, alongside our
well-known intrinsic functions
and operators.

Algebraic rules:
d(a+b)=0a+0b
d@a-b)=(0a)-b +a-(db)

A simple illustrative example:

Find a formula for the derivative
of the root function v/x .

We know x =+/x - v/x . Applying
derivation operator:

I =0(Vx-vx)=2+x d(Vx)
So

o(Vx)=1/2+/x

Differential Algebra — What’s That?

From Wikipedia (Oct 2024)

In mathematics, differential algebra is,
broadly speaking, the area of mathematics
consisting in the study of differential
equations and differential operators as
algebraic objects in view of deriving
properties of differential equations and
operators without computing the solutions,
similarly as polynomial algebras are used
for the study of algebraic varieties, which
are solution sets of systems of polynomial
equations. Weyl algebras and Lie algebras
may be considered as belonging to
differential algebra.

More specifically, differential algebra
refers to the theory introduced by Joseph
Ritt in 1950, in which differential rings,
differential fields, and differential
algebras are rings, ficlds, and algebras
equipped with finitely many
derivations. 21131
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https://en.wikipedia.org/wiki/Differential_algebra#cite_note-FOOTNOTEKaplansky1976-3

Computational DA — What’s That?

e The Differential Algebra for
analytic aberrations:

* Polynomials in six phase space
variables and t, sin(mt), cos(mt),
sinh(mt), cosh(wt)

* This space is closed under
addition, multiplication (i.e. it
forms an algebra)

* The space is also closed under
diff and integ (i.e. it forms a
differential algebra)

e The Program HAMILTON for the
Analytic Solution of the Equations
of Motion in Particle Optical
Systems through Fifth Order
M. Berz, H. Wollnik, Nuclear
Instruments and Methods A258
(1987) 364-373



https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqham
https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqham
https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqham
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C:\Berz\Docs\S11des\TM\TMO4\ELMM.FOR

SUBROUTINE elmm(L,Z,K01,K02,K03,K04,K05,K27,K32,NORDER,NG,ND)

xxxxxxxxx

xxxxxxxxx

Subroutine to Compute Aberration Equations Equations

Magnetic Multipole to Fifth Order

Computer Generated by Program HAMILTON (C) M. Berz 1985

IMPLICIT DOUBLE PRECISION (A - 2)

INTEGER NORDER, NG, ND

DOUBLE PRECISION L(0:461,7)

K30 = 1./(1+K32)
K31 = 1./(1+K32/2.)
FX2 = -K01*K27
FY2 = +K01*K27
IF(FX2.LT.-1.D-8) THEN
AFX = SQRT(-FX2)
CX = COS(AFX*Z)
SX = SIN(AFX*Z)/AFX
ELSEIF(FX2.GT.1.D-8) THEN
AFX = SQRT(FX2)
EX = EXP(AFX*2)
EEX = 1.DO/EX
CX = (EX + EEX)/2.DO
SX = (EX - EEX)/2.DO/AFX
ELSE
CX = 1.DO
SX =72
FX2 = 1.D-8
ENDIF
IF(FY2.LT.-1.D-8) THEN
AFY = SQRT(-FY2)
CY = COS(AFY*Z)

SY = SINCAFY*Z)/AFY
ELSEIF(FY2.GT.1.D-8) THEN

AFY = SQRT(FY2)

EY = EXP(AFY*2)

EEY = 1.DO/EY

CY = (EY + EEY)/2.DO
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100

SY
ELSE
CcY
SY
FY2
ENDIF

(EY - EEY)/2.DO/AFY

1.D0
Y4
1.D-8

CX

SX

CY

Sy

Z

K31*K32

K30*K32

FX2

Cs2

CS3

CS3*FF2

Cs4

CS5

CS5*FF2

CS6

CS6*KK2
CS6*KK3

(+TT2)

(+TT3)

(+TT4)

(+TT72)

(+TT5)

(+TT6)

(-TT7)

(+TT5)

-EQ.O0.AND.NG.EQ.0) GOTO 100

= (+1)

C:\Berz\Docs\S11des\TM\TMO4\ELMM.FOR

(-0.5D+00*TT8-0.25D+00*TT9+TT10)

.EQ.0) GOTO 100

+1)

= (+0.5D+00*TT8+0.25D+00*TT9-TT10)

IF(NORDER.EQ.1) GOTO 1000

CS7 = CS3*CX
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cs8

Cs9

CS10
cs11
Ccs12
cs13
Ccs14
Ccs15
Ccs16
Ccs17
cs18
KK4

KK5

KK6

FF3

FF4

TT11
TT12
TT13
TT14
TT15
TT16
TT17
TT18
TT19
TT20
TT21
TT22
TT23
TT24
TT25
TT26
TT27
TT28
TT29
TT30
TT31
TT32
TT33
TT34
TT35
TT36
TT37
TT38
TT39
TT40
TT41

CS3*SX
CS4*CX
CS4*SX
CS5*CX
CS5*SX
CS5*CY
CS5*SY
CS6*CX
CS6*SX
CS6*CY
CS6*SY
KK2*K31*K32
KK3*K31*K32
KO2*K27
1/FX2/FX2
FF3*FX2
KK6*FF4
CS2*KK6*FF4
CS8*KK6
CS3*KK6*FF4
CS7*KK6*FF4
KK6*FF3
CS2*KK6*FF3
CS8*KK6*FF4
CS14*KK6
CS13*KK6*FF4
CS14*KK6*FF4
CS16*FF2
CS16*KK2*FF2
CS3*KK2
CS15
CS15*KK2
CS3*KK6
CS7*KK6
CS13*KK6
CS3*KK2*FF2
CS15*FF2
CS15*KK2*FF2
CS4*KK6*FF4
CS9*KK6*FF4
CS12*KK6
CS10*KK6*FF4
CS5*KK6*FF4
CS11*KK6*FF4
CS4*KK6*FF3
CS9*KK6*FF3
CS12*KK6*FF4

C:\Berz\Docs\S11des\TM\TMO4\ELMM.FOR
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*

TT42
TT43
TT44
TT45
TT46
TT47
TT48
TT49
TT50
TT51
TT52
TT53
TT54
TT55
TT56
TT57
TT58
TT59
TT60
TT61
L(7,1)

L(8,1)

L(13,1)

18)

L(18,1)
L(19,1)
L(22,1)
L(7,2)

L(8,2)

L(13,2)
L(18,2)
L(19,2)
L(22,2)
L(9,3)

L(14,3)
L(10,3)
L(15,3)
L(9,4)

L(14,4)
L(10,4)
L(15,4)
L(7.7)

L(8,7)

L(13,7)
L(18,7)
L(19,7)
L(22,7)

CS18*FF2
CS18*KK2*FF2
CS5*KK2

CS17
CS17*KK2
CS10*KK6
CS5*KK6
CS11*KK6
CS5*KK2*FF2
CS17*FF2
CS17*KK2*FF2
CS7*FF2
CS6*FF2
CS8*FF2

CS7

CS13*FF2
CS14*FF2
CS13

CS6*KK4
CS6*KKS5

C:\Berz\Docs\S11des\TM\TMO4\ELMM.FOR

= (+0.33333334327D+00*(+TT11-TT12-TT13))
= (+0.66666668654D+00*(+TT14-TT15))

(+0.66666668654D+00*(-TT16+TT17)-0.33333333333D+00*TT

(+0.60000002384D+00*(~-TT11+TT12)+0.2D+00*TT19)

(+0.40000000596D+00* (+TT14-TT20))

(+0.40000000596D+00* (-TT16+TT17)-0.2D+00*TT21)
(-0.33333333333D+00*TT27-0.66666666667D+00*TT28)
(+0.66666668654D+00*(~TT11+TT12)-0.13333333333D+01*TT13)

(+0.66666668654D+00* (+TT14-TT15))

(+0.6D+00*TT27+0 . 4D+00*TT29)

(+0.40000000596D+00*(~TT11+TT12)+0.8D+00*TT19)

(+0.40000000596D+00* (+TT14-TT20))

= (+0.40000000596D+00*(-TT33+TT34)+0.8D+00*TT35)

(+0.4D+00*TT36-0.12D+01*TT37+0.8D+00*TT38)
(-0.8D+00*TT36+0.40000000596D+00* (+TT37+TT38))
(+0.80000001192D+00* (+TT39-TT40)+0.4D+00*TT41)

= (+0.12D+01*TT47+0.40000000596D+00* (+TT48+TT49))

(+0.12000000477D+01*(-TT33+TT34)+0.4D+00*TT35)
(+0.40000000596D+00* (+TT33-TT34)+0.12D+01*TT35)
(-0.4D+00*TT36-0.8D+00*TT37+0.12D+01*TT38)
(+0.25D+00* (+TT53-TT54))

(+0.5D+00*TT55)

(+0.25D+00* (+TT56+TT8))
(+0.25D+00*(~TT57+TT54))

(-0.5D+00*TT58)

(+0.25D+00* (+TT59+TT8))
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C:\Berz\Docs\S11des\TM\TMO4\ELMM.FOR

27,000 lines further down:

L(449,7) = (-0.87890625D-01*TT59-0.244140625D-01*TT347
+0.2197265625D-01*TT1723+0. 14282226563D+00*TT6924+0 . 390625D-01*(
+TT348-TT1724)-0.263671875D+00*TT6925-0 . 380859375D+00*TT8
~0.1162109375D+00*TT9+0.9521484375D-01*TT60+0.26733398438D+00*TT
351+0.1484375D+00*(+TT10-TT61)-0.439453125D+00*TT352
+0.29296875D+00*TT349+0.91796875D-01*TT350-0.732421875D-01*TT
1725-0.12451171875D+00*TT6926+0 . 109375D+00*(~-TT1726+TT1727)
+0.17578125D+00*TT6927+0 . 140625D+00*TT1728+0 . 546875D-01*TT1729
~0.3515625D-01*TT1730-0.29296875D-01*TT6928+0.3125D-01*(-TT
6929+TT6930)+0.234375D-01*TT6931+0.78125D-02* (+TT6892-TT6933)
+0.390625D-02* (+TT6893+TT6934)+0..1953125D-02* (~-TT6894+TT6935)
~0.9765625D-03*TT6895-0. 15625D-01*TT6932)

L(458,7) = (+0.234375D-01*TT8-0.390625D-02*TT9-0.8203125D-01*TT
60+0.380859375D+00*TT351-0.32470703125D+00*TT1731
+0.76904296875D-01*TT6936+0 . 15625D-01*TT10+0 . 21875D+00*TT61
~0.9140625D+00*TT352+0 . 7421875D+00*TT1732-0.1708984375D+00*TT
6937)

L(459,7) = (+0.390625D-01*TT8+0.390625D-02*TT9-0.1171875D-01*TT

* 60-0.68359375D-01*TT351+0.18798828125D+00*TT1731

*  _0.76904296875D-01*TT6936-0.15625D-01*TT10+0.3125D-01*TT61

*

*

O X % X % % ok ok ok %

* Ok F %

+0.1640625D+00*TT352-0.4296875D+00*TT1732+0 . 1708984375D+00*TT
6937)

L(460,7) = (+0.13671875D+00*TT8+0.29296875D-01*TT9+0.5859375D-02
*TT60-0.48828125D-02*TT351-0.25634765625D-01*TT1731
+0.38452148438D-01*TT6936-0.1171875D+00*TT10-0.15625D-01*TT61
+0.1171875D-01*TT352+0.5859375D-01*TT1732-0.8544921875D-01*TT
6937)

o % %

500 IF(NORDER.EQ.5) GOTO 1000

*

1000 CONTINUE

*

RETURN
END
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History of Higher Order Optics

Light Optics Electron Optics Particle Optics
(Round Lenses) (Round Lenses)  (Non-Round Lenses)

1 Gauss 1841 ?

2 (Gauss 1841) Brown 1959

3 Petzval 1840 Scherzer 1936 Matsuda,
Seidel 1856 Wollnik 1965

4

5  Kohlschiitter, M.B. 1985

Schwarzschild 1905
Rabinovich 1946



Maps as Taylor Series

"The determination of terms of order higher than fourth is very labori-
ous in all but the simplest cases. For this reason, algebraic calculations
are usually restricted to the domain of the Seidel theory, supplemented
where necessary by ray tracing’ .

Born-Wolf, Principles of Optics, Pergamon 1959
Some Power Series Particle Optics Codes:

e TRANSPORT (2nd order, thick elements, early 60s)

e GIOS (3rd order, thick elements, fringe fields, late 60s)

e MaryLie (3rd order, thick elements, fringe fields, late 70s)
e COSY 5.0 (5th order, thick elements, fringe fields, 1985)[]



Computational DA — What’s That?

The Differential Algebra for
analytic aberrations:

Polynomials in six phase space
variables and t, sin(mt), cos(wt),
sinh(mt), cosh(wt)

This space is closed under
addition, multiplication (i.e. it
forms an algebra)

The space is also closed under
diff and integ (i.e. it forms a
differential algebra)

The Program HAMILTON for the
Analvtic Solution of the Equations

of Motion in Particle Optical
Systems through Fifth Order
M. Berz, H. Wollnik, Nuclear
Instruments and Methods A258
(1987) 364-373

This space had floating point
coefficients, so it was always
“numerical”

That being said, why not evaluate
all the integrals not in closed form,
but using a numerical integrator?

This is the conceptually simplest
method to get high order maps
simply, called TPSA method

The Method of Power Series

Tracking for the Mathematical

Description of Beam Dynamics

M. Berz, Nuclear Instruments and
Methods A258 (1987) 431-436


https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqham
https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqham
https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqham
https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqham
https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqtpsa
https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqtpsa
https://www.bmtdynamics.org/cgi-bin/display.pl?name=abqtpsa

Maps as Taylor Series

"The determination of terms of order higher than fourth is very labori-
ous in all but the simplest cases. For this reason, algebraic calculations
are usually restricted to the domain of the Seidel theory, supplemented
where necessary by ray tracing’ .

Born-Wolf, Principles of Optics, Pergamon 1959
Some Power Series Particle Optics Codes:

e TRANSPORT (2nd order, thick elements, early 60s)

e GIOS (3rd order, thick elements, fringe fields, late 60s)

e MaryLie (3rd order, thick elements, fringe fields, late 70s)

e COSY 5.0 (5th order, thick elements, fringe fields, 1985)

e COSY INFINITY (arbitrary order, thick elements, fringe fields...)[]



Codes Using DA methods

Since we introduced it, many/most modern codes use DA:
e PowerTrack (Berz) *)

e TPot (Talman) *)

e TLie (van Zeijts)

e ZLib (Yan)

e MXYZTPLK (Michelotti, ...)

e DACYC (Davies, ...)

e Classic (Iselin, ...)

e PTC (Forest, ...) *)

e MAD-X, SixTrack (Schmidt, ...) *)
e TPSALib (Yang)

e COSY Infinity *)

*) Using modern or earlier versions of our DA package



Automatic Differentiation — What It Is and Isn’t

e Transform existing code to compute not only
values, but derivatives.

* Experts often shy away from saying
“Automatic”, since neither the forward nor the
reverse mode usually work as black box. It
usually requires clever “checkpointing”, 1i.e.
doing things in handpicked pieces.

* Having derivatives more often than not ends up
in re-doing the code for increased efficiency.

» First Conference in the field: Andreas
Griewank, who sadly passed in 2021. We
organized the second Conference

 Amazon: This volume goes beyond the first
volume published in 1991 (STAM) in that it
encompasses both the automatic transformation
of computer programs as well as the
methodologies for the efficient exploitation of
mathematical underpinnings or program
structure.




Computational DA — Better Ways

Except of special cases, stick to the simplest possible DA: Polynomials in
phase space variables, parameters, and t

This space is closed under addition, multiplication, it forms an algebra. It
is also closed under diff and integ, so it forms a differential algebra.

Do not try to just use a tracking code and DA-ify it. Rather think from
scratch to build algorithms fully exploiting the DA spirit and possibilities



NUMBER FIELDS AND
FLOATING POINT NUMBERS

T N
(Truncation to n digits; g
Equivalence Relation)
Real Numbers Floating Point
Numbers
-
c=a+b * ® cr=arebr
T
T
c=a-‘b . © CT:aTQbT
T
Field Diagrams commute Field
(Also want “exp”, “sin” “approximately” (“approximately™)

etc: Banach Field)

T: Extracts information
considered relevant



Differential Algebra

FUNCTION ALGEBRAS

T

Space of Functions
— —

h=f+g
e
D <
o
<
< h=f g
—
h=>f
x

Differential Algebra
(also want “exp”, “sin”
etc: Banach DA)

(Truncation to order n;
Equivalence Relation)

T
+ ®
T
T

©
T
T

a S
T

Diagrams commute
exactly

T: Extracts information
considered relevant

Y

Taylor Polynom\ials

hT :fTeB g-l-
S
hT :fTG a1
-
hr=®gr

Differential Algebra

(even Banach DA)

VSdl

~




Computational DA — Better Ways

Except of special cases, stick to the simplest possible DA: Polynomials in
phase space variables, parameters, and t

This space is closed under addition, multiplication, it forms an algebra. It
is also closed under diff and integ, so it forms a differential algebra.

Do not try to just use a tracking code and DA-ify it. Rather think from
scratch to build algorithms fully exploiting the DA spirit and possibilities

Solve ODEs (motion) and PDEs (fields) directly using differential
algebraic tools:

Picard Iteration et al. for ODEs an enhanced version of this won the
Moore Prize for rigorous computing for Makino and Berz “for the
development of novel high performance rigorous self-verified integrators
for flows of ODESs based on Taylor model and differential algebraic
methods”

Fixed Point Iteration for PDEs (allows to self-consistently solve for
Maxwellian fields)

Minimal Impact Symplectification of map tracking
Fast Multipole Methods for some space charge simulations



COSY INFINITY

e Arbitrary order

e Maps depending on parameters (mass dependence!)
e No approximations in motion or field description

e Large library of elements

e Arbitrary Elements (you specify fields)

e Very flexible input language

e Powerful interactive graphics

e Errors: position, tilt, rotation

e Tracking through maps

e Normal Form Methods

e Spin dynamics

e Fast fringe field models using SYSCA approach

e Reference manual (80 pages) and Programming manual (90 pages)

e As of December 2004, more than 1000 registered users



Elements in COSY

e Magnetic and electric multipoles

e Superimposed multipoles

e Combined function bending magnets with curved edges
e Electrostatic deflectors

e Wien filters

e Wigglers

e Solenoids, various field configurations

e 3 tube electrostatic round lens, various configurations
e Exact fringe fields to all of the above

e Fast fringe fields (SYSCA)

e General electromagnetic element (measured data)

e Glass lenses, mirrors, prisms with arbitrary surfaces
e Misalignments: position, angle, rotation

All can be computed to arbitrary order, and the dependence on any of
their parameters can be computed.



The Operator 0 'on Taylor Models

Let (P,, I,) be an n-th order Taylor model of f. From this we can obtain
a Taylor model for the indefinite integral 0, Lf = [ f dx} with respect to
variable x;.

Taylor polynomial part: ;" B,_1da,

Remainder Bound: (B(P,—P,-1)+1,)-B(x;), where B(P) is a polynomial
bound.

So define the operator 82-_101(1 space of Taylor models as

0, (P, 1)
([ st R Py 1) B



Taylor Models for the Flow

Goal: Determine a Taylor model, consisting of a Taylor Polynomial and
an interval bound for the remainder, for the flow of the differential equation

d

S7(t) = F(r(t), 0

where F is sufficiently differentiable. The Remainder Bound should be fully
rigorous for all initial conditions 7y and times ¢ that satisfy

—

o € |To1,To2] = B
t € [to, t1].

In particular, 7 itself may be a Taylor model, as long as its range is known
to lie in B.



The Use of Schauder’s Theorem

Re-write differential equation as integral equation

—

t
F(t) =7 + / F(r(d), ) dt.
Lo
Now introduce the operator
A COto, t1] — CPlto, t4]

on space of continuous functions via

t
A (f) (t) = 7 +/ Ia (f(t’),t’) dt'
Lo
Then the solution of ODE is transformed to a fixed-point problem on space
of continuous functions
7= A(7).

Theorem (Schauder): Let A be a continuous operator on the Banach
Space X. Let M C X be compact and convex, and let A(M) C M. Then
A has a fixed point in M, i.e. there is an ¥ € M such that A(T) = 7.



The Polynomial of the Self-Including Set

Attempt sets M* of the form

]\4>I< = Mﬁ*+f* Where

ﬁ* — Mn(f)()at))

the n-th order Taylor expansion of the flow of the ODE. It is to be expected
that 7* can be chosen smaller and smaller as order n of P* increases.

This requires knowledge of nth order flow M, (7, t), including time de-
pendence. It can be obtained by iterating in polynomial arithmetic, or
Taylor models without treatment of a remainder. To this end, one chooses
an initial function M. (7,t) = Z, where 7 is the identity function, and
then iteratively determines

This process converges to the exact result M,, in exactly n steps.



SET INCLUSIONS
(INTERVALS)

Real Numbers

c=a+b

Field

(Also want “exp”, “sin”

etc: Banach Field)

A\

(Interval Inclusion;
Equivalence Relation)

Diagrams commute
exactly!

I: Extracts information
considered relevant

Floating Point
Intervals

C|= 4 eab,

Little Algebraic
Structure



Differential Algebra

FUNCTION ALGEBRA

INCLUSIONS
I

Space of Functions
— —

h=f+g
S
8 <
=2
<
'< h=f g
N—
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Diagrams commute
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The Remainder of the Self-Including Set

Now try to find I* such that
AM, +T") c M, + I*,

the Schauder inclusion requirement. Suitable choice for I requires experi-
menting, but is greatly simplified by the observation

I 5 1 = AM,(7,t) + [0,0]) — M,,(7, ).

Evaluating the right hand side in RDA yields a lower bound for I*, and a
benchmark for the size to be expected. Now iteratively try

Tk — ok . Jl0)
until computational inclusion is found, i.e.

AM,(Ft) + TV € M, (7, t) + TW,



Field Description in Differential Algebra

There are various DA algorithms to treat the fields of beam optics efficiently.
For example, DA PDE Solver

e requires to supply only

— the midplane field for a midplane symmetric element.

— the on-axis potential for straight elements like solenoids, quadrupoles,
and higher multipoles.

e treats arbitrary fields straightforwardly.

— Magnet (or, Electrostatic) fringe fields:
The Enge function fall-off model

1
 14exp(ar +ag- (s/D)+ ... +ag- (s/D))
where D is the full aperture.
Or, any arbitrary model including the measured data representation.

— Solenoid fields including the fringe fields.
— Measured fields: E.g. Use Gaussian wavelet representation.—
Etc. etc.

F(s)
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LHC-HGQ Lead End Enge Function

Enge Function, Quadrupole, Entrance: LHC—HGQ Lead End

—3.5 -3 inside o outside 5 5.5 x 2d

Enge Function Derivative 1, Quadrupole, Entrance: LHC-HGQ Lead End Enge Function Derivative 2, Quadrupole, Entrance: LHC-HGQ Lead End

o. 2.42
o
-1.52 -1.68
-3.5 -3 inside o outside 5 5.5 x 24 -3.5 -3 inside o outside 5 5.5 x



DA Fixed Point PDE Solvers

The DA fixed point theorem allows to solve PDEs iteratively in
finitely many steps by rephrasing them in terms of a fixed point problem.
Consider the rather general PDE

0 0 0 0 0 9,
a1% (CLQ%V) blay (bga—yv> + 01& (CQ@V) = O,

where a;, b;, ¢; are functions of z, y, 2
The PDE is re-written in fixed point form as

e [ 505,
LR (o () 2 ()

Assume the derivatives of V' and 0V/0y with respect to x and z are
known in the plane y = 0. Then the right hand side is contracting
with respect to y (which is necessary for the DA fixed point theorem), and
the various orders in y can be iteratively calculated by mere iteration.
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o Symplecticity governs all Hamiltonian systems

o Symplecticity Is rather hard to enforce; thus:

o Either try hard to track the right system, end up being non-symplectic
e Or track the wrong system with symplectic models
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The Crux of Symplectic Tracking

Symplecticity governs all Hamiltonian systems

Symplecticity is rather hard to enforce; thus:

Either try hard to track the right system, end up being non-symplectic
Or track the wrong system with symplectic models

Right System, Non-Symplectic Wrong System, Symplectic

e Best possible fields, potentials * Approximate Hamiltonian

« Exact Hamiltonian  Approximate Fields

e Good integrators « Symplectic Integrators

»  Examples: numerical integrators, * Examples: Kick codes
Map codes

Goal: Search wrong system nearest to right system

Start with best possible right system

High-order transfer map using “best” fields

This makes it wrong - finite order, numerical error
Symplectify using “nearest” via Hofer’s metric
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Oubl 1{5 Y’ (rad) vs. Y (m)
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* # COORDINATES - STORAGE FILE, 01-10-2015 07:05:27 *
Mi-ma H/V: -0.102 0.110 / -0.102 0.102

Part# 1- 10000 (*); Lmnt# 1l; pass# 1- 33, [ 11;
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The Fast Multipole Method [Greengard et al.]

« According to our particle physics colleagues, there is perfect democracy:
all electrons are equal
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« According to our particle physics colleagues, there is perfect democracy,
all electrons are equal

e But as it turns out, some are more equal than others:
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FMM Method: To determine
the field, lump together far
away charges and replaces
them with their multipole
expansion.



The Fast Multipole Method (FMM)

all electrons are equal

FMM Method: To determine
the field, lump together far
away charges and replaces
them with their multipole
expansion.

Playing this trick to the end
leads to computational
expense that scales linear
with the number of particles:

Computation time (in minutes)

According to our particle physics colleagues, there is perfect democracy,

But as it turns out, some are more equal than others:
Coulomb Law Discriminates - Far away charges are less important!
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FMM - Basic Ideas 1

First step - Particle Scattering: Distribute the particles into a grid of
variable-sized boxes.

» Determine a global box that contains all N particles (Linear in N)

» While distributing particles, if number of particles in a box exceeds pre-
specified maximum M, split that box into two (Linear in N)



FMM - Basic Ideas 1

First step - Particle Scattering: Distribute the particles into a grid of
variable-sized boxes.

» Determine a global box that contains all N particles (Linear in N)

» While distributing particles, if number of particles in a box exceeds pre-
specified maximum M, split that box into two (Linear in N)

* End result: an arrangement of boxes of unequal size that are related to
each other through a sparse tree describing split hierarchy.

b




FMM - Basic Ideas 2

Second Step — Compute “Far’” Multipoles (J.D. Jackson-type) of each box:

« Expand potential of all particles around center of their box. Order n of
expansion is an accuracy control parameter.

* In practice, expand in powers of 1/r and trig functions (conventional
spherical harmonics), or in powers of 1/r, 1/x, 1/y, 1/z (more convenient)
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Particles can be points, Gaussians, wavelets, asymmetric, etc etc — no
fundamental difference, possibly big practical difference in complexity

Process is again linear in N, since for each particle, there is a fixed effort
of determining its multipole contribution to the box.



FMM - Basic Ideas 2

Second Step — Compute “Far’” Multipoles (J.D. Jackson-type) of each box:

Expand potential of all particles around center of their box. Order n of
expansion is an accuracy control parameter.

In practice, expand in powers of 1/r and trig functions (conventional
spherical harmonics), or in powers of 1/r, 1/x, 1/y, 1/z (more convenient)

Particles can be points, Gaussians, wavelets, asymmetric, etc etc — no
fundamental difference, possibly big practical difference in complexity

Process is again linear in N, since for each particle, there is a fixed effort
of determining its multipole contribution to the box.

Third Step — Compute “Near” Multipoles (Optics-type) for each box:

Classify all other boxes as “nearby” or “distant”, depending on ratio r of
their diameter to distance of center points.

For all “distant” boxes, determine resulting local expansion in x, y, z. If a
parent box is distant, ignore its child boxes.

If potential fall-off is fast enough, number of contributing distant boxes
has fixed upper bound, resulting in process linear in N



FMM - Basic Ideas 3

In the case of point particles, force on each particle has two contributions:
1. Local multipoles from the box in which it resides
2. Direct Coulomb force from nearby particles
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In the case of point particles, force on each particle has two contributions:
1. Local multipoles from the box in which it resides
2. Direct Coulomb force from nearby particles

In the case of soft particles, add forces of nearby particles into local
expansion

Properties of the FMM Method:

* No need for Particle-In-Cell, PDE solvers, etc

» Works for any particle distribution — smooth, lumpy, disk-shaped, etc etc
* No artificial smoothing

« All approximations can be quantitatively understood and estimated



FMM - Basic Ideas 3

In the case of point particles, force on each particle has two contributions:
1. Local multipoles from the box in which it resides
2. Direct Coulomb force from nearby particles

In the case of soft particles, add forces of nearby particles into local
expansion

Properties of the FMM Method:

e No need for Particle-In-Cell

» Works for any particle distribution — smooth, lumpy, disk-shaped, etc etc
* No artificial smoothing

« All approximations can be quantitatively understood and estimated

Accuracy is controlled by
1. Order n of local expansion
2. Ratio r deciding “nearness/farness”



DA-FMM 1 - Help with Expansions

The use of DA methods can help in the FMM framework in two different
ways:

First, FMM is all about expansions. But, this is what DA does automatically
and very efficiently.

1. Inthe case of point particles, it simplifies the treatment and results in
code not much more difficult than the one for direct particle-to-particle
summation. In particular, no graduate students will be abused computing
high-order expansions and coding the results.



DA-FMM 1 - Help with Expansions

The use of DA methods can help in the FMM framework in two different
ways:

First, FMM is all about expansions. But, this is what DA does automatically
and very efficiently.

1. Inthe case of point particles, it simplifies the treatment and results in
code not much more difficult than the one for direct particle-to-particle
summation. In particular, no graduate students will be abused computing
high-order expansions and coding the results.

2. Inthe case of non-point particles, computing multipole expansions can be
rather difficult — any volunteers for non-symmetric wavelets?

3. Using computer algebra systems does not help much since the resulting
derivative code intimidates by sheer size, and is consequently also slow,
especially when compared to DA code



DA-FMM 2 — The Real Virtue

In conventional FMM, a local expansion of the potentials/fields is computed
for each box.

For integration of particle ensembles in time, this is then inserted in an ODE
solver, possibly with step size control.
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Then, instead of inserting particles in local field polynomials, ...

One inserts particles into the local high-order transfer map polynomials and
IS done with the entire time step at once.



DA-FMM 2 — The Real Virtue

In conventional FMM, a local expansion of the potentials/fields is computed
for each box.

For integration of particle ensembles in time, this is then inserted in an ODE
solver, possibly with step size control.

But: thinking further along the FMM philosophy of local expansion, why stop
at expansion in position for each time step?

Why not also expand each local box forward in time?
Then, instead of inserting particles in local field polynomials, ...

One inserts particles into the local high-order transfer map polynomials and
IS done with the entire time step at once.

The DA flow operator does not mind where its right hand side comes from. As
long as it is a code list, it can compute the high-order flow automatically.



Beam Emission Simulation 1 - 3D DA-FMM

o Laser pulse is applied, Gaussian in position and time

» Extraction field of 2kV/m removes electrons from surface
e Abunch is formed and starts to move away from surface
« [All simulations from He Zhang, dissertation MSU 2012]
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Beam Emission Simulation 2 - 3D DA-FMM

» Electron bunch develops further; here we show 115 ps total

» Some electrons are pulled back by evolving counter charge

« Eventually the beam nearly fully detaches

» Complexity of the extraction process entails irregular beam shape

» lrregular shape entails non-linear space charge field, and thus aberrations
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Beam Emission Simulation 3 — z-pz Projection

pz(MeV/c)

pz(MeV/c)
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0

-0.5

Show projection of dynamics in z-pz space, up to 155 ps

Z increases, and correlates with pz as expected

Linear dynamics would appear as elliptical shape

Actual distribution is convex, and heavily clustered at the top
Further evidence of significant nonlinear effects
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Beam Dynamics Simulation — Effect of Round Lens

» During further simulation, beam bunch encounters magnetic lens

e Display z-pz motion

0.3356 |

0.3354 -

0.3352 |-

0.335 |-

pz(MeV/c)

0.3348 -

0.3346

0.3344 '

-48.3 -48.2 -48.1

-48 -47.9-47.8-47.7
z(mm)

6e-005

5e-005

4e-005

3e-005

2e-005

1e-005

0

pz(MeV/c)

0.3356
0.3354
0.3352

0.335
0.3348
0.3346
0.3344
0.3342

Originally round shape gets severely distorted

I

|

z(mm)

-24.2 -24.1 -24 -23.9-23.8-23.7

7e-005
6e-005
5e-005
4e-005
3e-005
2e-005
1e-005
0



Beam Dynamics Simulation — Effect of Round Lens
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