





# A Lattice Boltzmann approach to plasma simulation in the context of wakefield acceleration

D.Simeoni, F.Guglietta, G.Parise, A.R.Rossi, M.Sbragaglia

Oct 02, 2024

# Plasma Wakefield Acceleration (PWFA)



#### Relativistic electron bunch injected in a plasma channel

- 1. Plasma electrons on the bunch trajectory are pushed back
- 2. A wake of positive charges is formed
- 3. Strong accelerating/focusing electric fields develop in the wake
- 4. A probe particle bunch could take advantage of such fields

# Plasma Wakefield Acceleration (PWFA)



#### Relativistic electron bunch injected in a plasma channel

- 1. Plasma electrons on the bunch trajectory are pushed back
- A wake of positive charges is formed
- 3. Strong accelerating/focusing electric fields develop in the wake
- 4. A probe particle bunch could take advantage of such fields

Plasma modeling achieved at different space scales:



Target equation: relativistic Vlasov equation

$$\frac{d}{dt}f(\mathbf{r},\mathbf{v},t)=\Omega(\mathbf{r},\mathbf{v},t)=0$$

### Approaches to theoretical/numerical modeling in PWFA



### Approaches to theoretical/numerical modeling in PWFA



### Approaches to theoretical/numerical modeling in PWFA



Daniele Simeoni

**ICAP 2024** 

### Key aspects of the method [1,2]: momentum-space discretization

Suitable discretization of the momentum space via adoption of quadrature rules...



How do we select such discrete momenta?

[1] Succi The Lattice Boltzmann Equation: For Complex States of Flowing Matter, Oxford University Press, (2018)

[2] Krüger et al. The Lattice Boltzmann Method, Springer International Publishing, (2017)

### Key aspects of the method [1,2]: momentum-space discretization

Choice made to preserve **exactly** the continuous moments of the p.d.f when moving to a discrete momentum space

$$\rho, \mathbf{J} = \underbrace{\int \left[ \left( \dots \right) f(\mathbf{x}, \mathbf{p}, t) \right] d\mathbf{p}}_{\text{CONTINUUM MOMENTUM SPACE}} = \underbrace{\sum_{i=0}^{N-1} \left[ \left( \dots \right) f_i(\mathbf{x}, \mathbf{p}_i, t) \right]}_{\text{DISCRETE MOMENTUM SPACE}}$$

How many discrete momenta N to take? It depends on the number of moments one wants to recover!  $N \sim O(10)$  for fluid modeling



Succi The Lattice Boltzmann Equation: For Complex States of Flowing Matter, Oxford University Press, (2018)
Krüger et al. The Lattice Boltzmann Method, Springer International Publishing, (2017)

Key aspects of the method [1,2]: space - time discretization
▶ Obtain the LB Equation

$$f_i\left(\mathbf{x} + \Delta\mathbf{x}, t + \Delta t\right) = f_i(\mathbf{x}, t) + \Delta t \Sigma_i(\mathbf{x}, t)$$

- 1. Time discretization  $\Delta t$
- 2. Regular lattice of characteristic length  $\Delta \mathbf{x} = \left(\frac{\mathbf{p}_i}{m}\right) \Delta t$
- 3. Source term  $\Sigma_i(\mathbf{x}, t)$  (Electromagnetic, ...)
- Evolve through source & stream paradigm



[1] Succi The Lattice Boltzmann Equation: For Complex States of Flowing Matter, Oxford University Press, (2018)

[2] Krüger et al. The Lattice Boltzmann Method, Springer International Publishing, (2017)

$$\frac{d}{dt}f(\mathbf{r},\mathbf{v},t)=0$$
  $\Rightarrow$ 

- Conservation of mass
- Conservation of momentum
- Conservation of energy

Set of equations not yet closed. Fluid closure is needed

| COLD CLOSURE                                                                | LOCAL EQ. CLOSURE [1] (LEC)                                                         | WARM CLOSURE [2,3](WARMC)                                                                                 |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Zero temperature limit $(T = 0)$                                            | Relativistic Maxwellian<br>equilibrium ( <i>f</i> = <i>f</i> <sup>eq</sup> )<br>↓   | Truncation of III order centralized moment                                                                |
| Ą                                                                           | Entropy conservation                                                                | Ų                                                                                                         |
| $m{\sigma} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$ | $oldsymbol{\sigma} = egin{pmatrix} P & 0 & 0 \ 0 & P & 0 \ 0 & 0 & P \end{pmatrix}$ | $oldsymbol{\sigma} = egin{pmatrix} P_\perp & 0 & 0 \ 0 & P_\perp & 0 \ 0 & 0 & P_\parallel \end{pmatrix}$ |

[1] Toepfer et al. Phys. Rev. A (1971)

- [2] Schroeder et al. Phys. Rev. E, (2005) (2010)
- [3] Katsouleas et al. Phys. Rev. Lett. (1988)

$$\frac{d}{dt}f(\mathbf{r},\mathbf{v},t)=0$$
  $\Rightarrow$ 

- Conservation of mass
- Conservation of momentum
- Conservation of energy

Set of equations not yet closed. Fluid closure is needed

| COLD CLOSURE                                                                | LOCAL EQ. CLOSURE [1] (LEC)                                                         | WARM CLOSURE [2,3](WARMC)                                                                                 |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Zero temperature limit $(T = 0)$                                            | Relativistic Maxwellian equilibrium $(f = f^{eq})$                                  | Truncation of III order centralized moment                                                                |
| Ų                                                                           | ↓<br>Entropy conservation<br>↓                                                      | Ų                                                                                                         |
| $m{\sigma} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$ | $oldsymbol{\sigma} = egin{pmatrix} P & 0 & 0 \ 0 & P & 0 \ 0 & 0 & P \end{pmatrix}$ | $oldsymbol{\sigma} = egin{pmatrix} P_\perp & 0 & 0 \ 0 & P_\perp & 0 \ 0 & 0 & P_\parallel \end{pmatrix}$ |

[1] Toepfer et al. Phys. Rev. A (1971)

- [2] Schroeder et al. Phys. Rev. E, (2005) (2010)
- [3] Katsouleas et al. Phys. Rev. Lett. (1988)

$$\frac{d}{dt}f(\mathbf{r},\mathbf{v},t)=0$$
  $\Rightarrow$ 

- Conservation of mass
- Conservation of momentum
- Conservation of energy

Set of equations not yet closed. Fluid closure is needed

| COLD CLOSURE                                                                | LOCAL EQ. CLOSURE [1] (LEC)                                                         | WARM CLOSURE [2,3](WARMC)                                                                                 |
|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Zero temperature limit $(T = 0)$                                            | Relativistic Maxwellian equilibrium $(f = f^{eq})$                                  | Truncation of III order centralized moment                                                                |
| ţ                                                                           | ↓<br>Entropy conservation<br>↓                                                      | ħ                                                                                                         |
| $m{\sigma} = egin{pmatrix} 0 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$ | $oldsymbol{\sigma} = egin{pmatrix} P & 0 & 0 \ 0 & P & 0 \ 0 & 0 & P \end{pmatrix}$ | $oldsymbol{\sigma} = egin{pmatrix} P_\perp & 0 & 0 \ 0 & P_\perp & 0 \ 0 & 0 & P_\parallel \end{pmatrix}$ |

Our Lattice Boltzmann code is equipped to work with all of theese closures

[1] Toepfer et al. Phys. Rev. A (1971)

- [2] Schroeder et al. Phys. Rev. E, (2005) (2010)
- [3] Katsouleas et al. Phys. Rev. Lett. (1988)



Relevant features in the context of warm PWFA...

- ▶ Wave breaking (regularization of singularity of the cold fluids) [1,2,4]
- Impact on late stage dynamics: acoustic waves & motion of ions [5]
- Cumulative heating from the acceleration of long bunch trains [5]
- Broadening of electron filaments in positron acceleration experiments [6]
- [1] Schroeder et al. Phys. Rev. E, (2005)-(2010)
- [2] Katsouleas et al. Phys. Rev. Lett. (1988)
- [3] Toepfer Phys. Rev. A (1971)
- [4] Rosenzweig Phys. Rev. A Gen. Phys. (1988)
- [5] D'Arcy et al. Nature (2022)
- [6] Diederichs et al. Physics of Plasmas (2023)

### Results in warm linear theory: acoustic waves



When the driver's perturbation is weak, we have a linear theory to confront with...



Daniele Simeoni

**ICAP 2024** 

### Results in warm linear theory: acoustic waves



...and can measure temperature/closure dependent parameters



### **Results: PIC comparisons**

Can we use PIC solvers to discern between the two fluid closures?



### **Results: pressure anisotropies**



Further details in Simeoni et al. Physics of Plasma (2024)



#### **Outlook & Conclusions**

First step forward in the development of a a computational tool for enabling **realistic** and **rapid** prototyping for PWFA.

- Plasma treatment based on the lattice Boltzmann method
- Capability to include thermal effects (different fluid closures)

### What's next?

- 1. In depth comparison with PICs for quantitative assessments
- 2. GPU porting and Open Access
- 3. Extend methodology to full kinetic eqs.



#### **Outlook & Conclusions**

First step forward in the development of a a computational tool for enabling **realistic** and **rapid** prototyping for PWFA.

- Plasma treatment based on the lattice Boltzmann method
- Capability to include thermal effects (different fluid closures)

### What's next?

- 1. In depth comparison with PICs for quantitative assessments
- 2. GPU porting and Open Access
- 3. Extend methodology to full kinetic eqs.



## Thank You!

- Parise et al., Lattice Boltzmann simulations of plasma wakefield acceleration, Physics of Plasmas, (2022) 10.1063/5.0085192
- Simeoni et al., Lattice Boltzmann method for warm fluid simulations of plasma wakefield acceleration, *Physics of Plasmas*, (2024) 10.1063/5.0175910
- Simeoni et al., Thermal fluid closures and pressure anisotropies in numerical simulations of plasma wakefield acceleration, *Physics of Plasmas*, (2024) 10.1063/5.0216707







### **Backup Slides**

#### Some words on performances...



Parallelization on multi CPUs using MPI paradigm



#### Some words on performances...



#### Sim. parameters and running time

- $\zeta$  lattice points = 3 · 10<sup>3</sup> (Δζ = 0.53 μm)
- r lattice points =  $6 \cdot 10^2 (\Delta r = 0.53 \ \mu m)$
- total time steps =  $3 \cdot 10^4$  ( $\Delta t = 0.17$  fs)
- CPUs = 96 (Intel Xeon E5-2695@2.4 GHz)
- $\sim$  3 hours (Local Equilibrium LB)  $\sim$  6 hours (Warm Closure LB)

What about multi GPUs?

Our code is not running (yet!) on GPUs, but there are already LB-GPUs implementations in our research group [1]



[1] Bonaccorso et al. Computer Physics Communications, 277:108380, (2022)