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Outline

 Beam dynamics: Solvers @TEMF

 Scattered Field Formulation for Coupled Space Charge 

and Wakefield Calculations

 Results for traveling wave gun @SwissFEL
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Task

 Solve Maxwell’s eqs. + Eq. of Motion:

 # Particles, Geometry, multi-scale Full EM-Particle in cell

wakefield solver
space charge / particle

tracker

• EM wave eq. 

• Particles => current

− No intermediate feedback

• Poisson eq. in Lorentz frame

• Free-space assumption

− No transient fields

PBCIREPTILSolver @TEMF:
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Particle Tracking in REPTIL

 Solve Space Charge field + Eqs. of motion

 Assume particle cloud in free space + nearly-uniform movement

 Electrostatic field solver in particle’s rest frame

Update particle

positions & momenta

Forces at particle

positions

Transform 

particles

Transform 

fields back

ES 

solver

External fields

+
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Particle Tracking in REPTIL

 Relativistic Particle Tracker for 

Injectors and Linacs (REPTIL)

 Nx6D time domain, multi-node & multi-

thread

 Space Charge Field solvers: Grid-based 

(e.g. 3D-FFT) or non-grid (FMM, LW)

 Time integrators (adaptive, symplectic, …)

 Fieldmaps, optimization engine 

𝜑 𝑥 = න𝐺 𝑥 − 𝑥′ 𝜚 𝑥′ 𝑑𝐷𝑥
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 Solve Maxwell‘s wave equations in time domain

 Wakefield codes: particle beam is

1) ultra-relativistic (𝑣𝑧 = 𝑐) and

2) rigid (𝑣𝑧 = const.) 

→ prescribed current density 𝑗
→ kicks (per component)

Wakefield Simulation in PBCI
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Discretization

FIT / FDTD

𝑑

𝑑𝑡
𝐸 = 𝜀−1 curl 𝐻 − 𝜀−1 𝐽

𝑑

𝑑𝑡
𝐻 = −𝜇−1 curl 𝐸

𝑒, 𝑗

ℎ

primary grid

dual grid

voltages over grid edges

current through grid faces 
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Wakefield Simulation in PBCI
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FIT / FDTD with splitting

Discretized window
 Wakefield solver Parallel Beam Cavity 

Interaction (PBCI)

 Especially for short relativistic bunches, 

long transients

 3D time domain, boundary conformal FIT 

/ FDTD Maxwell EM-wave solver, multi-

node & multi-thread

 Moving window, dispersion-free along z 

(operator splitting), PML, SIBC, 

conducting material, indirect integration
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Task

 Solve Maxwell’s eqs. + Eq. of Motion:

 # Particles, Geometry, multi-scale Full EM-Particle in cell

wakefield solver
space charge / particle

tracker

• EM wave eq. 

• Particles => current

− No intermediate feedback

• Poisson eq. in Lorentz frame

• Free-space assumption

− No transient fields

Take the best from both?
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Scattered Field Formulation

𝑑

𝑑𝑡
𝐸 = 𝜀−1 curl 𝐻 − 𝜀−1 𝐽

𝑑

𝑑𝑡
𝐻 = −𝜇−1 curl 𝐸

BC: 𝐸t = 0 on ΓPEC

𝑑

𝑑𝑡
𝐸i = 𝜀−1 curl 𝐻i − 𝜀−1 𝐽

𝑑

𝑑𝑡
𝐻i = −𝜇−1 curl 𝐸i

arbitrary BC

𝑑

𝑑𝑡
𝐸s = 𝜀−1 curl 𝐻s

𝑑

𝑑𝑡
𝐻s = −𝜇−1 curl 𝐸s

BC: 𝐸s,t = −𝐸i,t on ΓPEC

𝐸 = 𝐸s + 𝐸i

𝐽

ΓPEC

𝐸s 0 = 𝐸 0 − 𝐸i(0)

Particle space charge solver

REPTIL

Wakefield solver PBCI 

(new BC)

 Idea: Separate field contributions

“Incident field” 

- Mxw. with beam current 

“Scattered field” 

- homogeneous Mxw. 

- modified boundary conditions

Set “incident field” to the space 

charge field of the particles in 

free-space
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 Realization in FIT – conforming boundaries:

 Modification of Faraday’s law at PEC boundary

 Restriction of incident field to conformal lengths / 

areas

 Rest of FIT- operators remain the same

Scattered Field Formulation in FIT

Primary FIT face
𝑥

𝑦
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𝑒i



TU Darmstadt |  Institute TEMF |  Jonas Christ, Erion Gjonaj |  11

FIT

Coupling: PBCI + REPTIL

3D Green-function + DFT

 Mesh-free, fast evaluation of 

space-charge farfield on 

boundary: FMM

 Solvers independent (grid, time 

step, optimization, …)

 Arbitrary geometry

 Arbitrary beam dynamics

𝑒i

𝑒s𝑒i

FMM
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Traveling Wave Gun Model

Lucas 2023, DOI: 10.1103/physrevaccelbeams.26.103401

 12-cell TW gun under design at 

SwissFEL (Lucas)

 Narrow, long geometry: 5mm iris radius, 

~22cm acceleration path length 

Bunch:

Charge 0.2nC

Length ~0.5mm

Size ~1mm

Energy 13MeV at gun exit

https://doi.org/10.1103/physrevaccelbeams.26.103401
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Traveling Wave Gun Model

 12-cell TW gun under design at 

SwissFEL (Lucas)

 Narrow, long geometry: 5mm iris radius, 

~22cm acceleration path length 

 Video: fields build up over time

Bunch:

Charge 0.2nC

Length ~0.5mm

Size ~1mm

Energy 13MeV at gun exit

cmp. IPAC’24, DOI: 10.18429/JACoW-IPAC2024-WEPR71

https://doi.org/10.18429/JACoW-IPAC2024-WEPR71
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 Wakefields reduce energy chirp in gun

 Wakes reach tail first

Energy Chirp

𝑧0 = 22cm

 ~10% RMS energy spread reduction 

at end of gun
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Full Injector Line Simulation

 Field in beam pipe approaches space 

charge impedance field

→ Weak coupling of wakefields to beam 

pipe and downstream sections

→ Include wakefields up to first accelerating 

section, continue with space charge solver 

only

Space Charge Impedance: 

𝐸𝑧 𝑧 =
−𝑄

2𝜋𝜀0𝛾
2
Λ
𝑑𝜆(𝑧)

𝑑𝑧
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Full Injector Line Simulation

 Field in beam pipe approaches space 

charge impedance field

→ Weak coupling of wakefields to beam 

pipe and downstream sections

→ Include wakefields up to first accelerating 

section, continue with space charge solver 

only

 Difference in RMS energy spread: 

5.5keV (simulated), 7.1keV (analytical)
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Summary

 Coupled Simulations:

 Space Charge Solver REPTIL

 Wakefield Solver PBCI

 Fast Multipole Method

 Scattered Field Formulation

 Electron Gun:

 Effect of wakes on energy chirp

 Limited coupling to downstream section

𝐽

ΓPEC


