

E. Gjonaj TU Darmstadt, TEMF, Germany

Modeling of intrabeam scattering in electron injectors

ICAP 2024 Oct. 2-5 2024, Seeheim-Jugendheim, Germany

Introduction

- Uncorrelated energy spread in x-ray FELs
 - FEL brightness: $B = \underbrace{2I}_{e_{n_x}e_{n_y}\sigma_{\gamma}}$ transverse emittance uncorrelated (slice) energy spread (SES)

Lower SES \rightarrow higher brightness electron beams

- For FEL performance: $\frac{\sigma_{\gamma}}{\gamma} < \rho$ FEL parameter
- Compression schemes for short bunches require small energy spread
- Critical interaction between SES and micro-bunching instability (MBI) via Landau damping

Introduction

- Intrabeam scattering (IBS) and SES
 - Recent measurements in FEL injectors:

Facility	Q (pC)	E (MeV)	L (m)	SES (keV)
SwissFEL	200	320	110	6
EuXFEL	250	130	45	4
PITZ	250	20	20	2

- Numerical simulations suggest SES ~ 0.5-1 keV
- The SES growth is due to IBS: Di Mitri et al., Experimental evidence of intrabeam scattering in a free-electron laser driver, (2020)
- Analytical models cannot describe the SES growth in the injector section due to the highly nonlinear beam dynamics there

IBS Theory

- IBS = Short-range Coulomb collisions within the bunch
 - Non-collective effect: standard space-charge tracking solvers not sufficient
 - Single collision events cannot be resolved by time step
 - For a simple binary collision:

IBS Theory

- Piwinski model (1974 → 2017)
 - Relative momentum change (lab frame):

$$\left(\frac{\delta p_1}{p}\right)_s = \frac{1}{2} \left[\gamma \frac{g_\perp}{p} \cos\phi \sin\theta + \frac{g}{p} (\cos\theta - 1) \right], \qquad \left(\frac{\delta p_1}{p}\right)_x = \cdots, \qquad \left(\frac{\delta p_1}{p}\right)_y = \cdots$$

- Relative energy (long. invariant): $H = \left(\frac{g}{p}\right)^2 \Rightarrow \delta H_1 = 2\frac{g}{p}\frac{\delta p_1}{p} + \left(\frac{\delta p_1}{p}\right)^2$
- Relative energy change in a bunch (Piwinski, 1974):

$$\left\langle \frac{d}{dt} \frac{\langle H \rangle}{\gamma^2} \right\rangle = \int d^3 p_2 d^3 r_2 d^3 p_1 d^3 r_1 f_1(r_1, p_1) f_1(r_2, p_2) g \int_{0}^{2\pi} d\phi \int_{\theta_{min}}^{\theta_{max}} d\theta \frac{d\sigma(g, \theta, \phi)}{d\Omega} \left(\frac{\delta H_1}{\gamma^2} \right)$$

Gaussian bunch

- High energy approximation:

$$\sigma_{\gamma} \frac{d\sigma_{\gamma}}{dz} = \frac{r_e^2 N_b \Lambda_c}{8\varepsilon_x^n \sigma_x \sigma_z} \quad (\text{Bane, 2002})$$

Cumulative scattering angle distribution

- Cumulative scattering angle distribution
 - For large number of (small angle) collisions:
 - Distribution is Gaussian
 - For N collisions:

 $\langle \Theta^2 \rangle = N \langle \theta^2 \rangle$ with: $N = 2\pi b_{max}^2 ng \Delta t$

- But:
 - Distribution is not Gaussian for 'small' N
 - Flat tail at large angles (rare events)
 - Rutherford formula is valid for small angles only
 - Value of Λ_c is ambiguous in practical calculations

(modified from Jacksons' book)

- Takizuka & Abe (1977)
 - Transform momenta in the bunch rest frame
 - Compute charge density in each mesh cell
 - Pair particles randomly within each cell
 - For each pair:
 - Produce a random scattering angle from normal distribution:

$$\langle \Theta^2 \rangle = 2 N \theta_{min}^2 \ln \left(\frac{\theta_{max}}{\theta_{min}} \right)$$

- Rotate Δg in the CM-frame with (θ, φ) with $\varphi \in [0, 2\pi]$
- Compute scattered momenta of the two particles, $p' = p \pm \frac{1}{2}\Delta g$
- Transform momenta back to the lab frame
- Proceed with space-charge calculations to the next time step

- Nanbu (1994)
 - Transform momenta in the bunch rest frame
 - Compute charge density in each mesh cell
 - Pair particles randomly within each cell
 - For each pair:
 - Solve: $coth(A) A^{-1} = exp(-2\langle \Theta^2 \rangle)$
 - Generate a scattering angle from distribution:

 $\theta(u) = \arccos \{ \log[\exp(-A) + 2 u \sinh(A)] \}, \ u \in [0,1]$

- Rotate Δg in the CM-frame with (θ, φ) with $\varphi \in [0, 2\pi]$
- Compute scattered momenta of the two particles, $p' = p \pm \frac{1}{2}\Delta g$
- Transform momenta back to the lab frame
- Proceed with space-charge calculations to the next time step

The Reptil code

RElativistc Particle Tracking for Injectors & Linacs

The SwissFEL injector ine

- Final energy: 320 MeV
- Bunch charge: 10...200 pC (nominal 200 pC)
- Average β -function: ~16 m (nominal)
- Bunch compressor and laser heater switched off and R₅₆ = 0

TECHNISCHE UNIVERSITÄT DARMSTADT

Slice energy spread (nominal configuration)

Slice energy spread ("large" optics)

Effect of lattice optics

Comparison with analytical model

TECHNISCHE UNIVERSITÄT DARMSTADT

Charge scan

Summary & Conclusions

- The IBS effect on uncorrelated energy spread remains a challenging topic
 - Several experiments at different labs predict important IBS effects in FELs
 - Available IBS theory not practicable for FEL-injectors
- Simulation approaches (and codes) exist
 - Most promising so far: classical Monte Carlo collision models
 - Other techniques exist...
- Self-consistent simulations with the Reptil code
 - Very good agreement for the SwissFEL injector
 - Ongoing work for the European XFEL
 - Open question: interaction between IBS and MBI in dispersive sections

Thank you very much for your attention