# Data-Driven Modeling of Quenches in Superconducting Accelerator Magnets

D. Paudel, F.J. Mangiarotti, M. Bonora, S. Russenschuck

October 4, 2024

**Quench:** Transition from SC to normal conducting state caused by beam losses, conductor movement, eddy currents etc



**Quench:** Transition from SC to normal conducting state caused by beam losses, conductor movement, eddy currents etc



**Quench:** Transition from SC to normal conducting state caused by beam losses, conductor movement, eddy currents etc



**Quench:** Transition from SC to normal conducting state caused by beam losses, conductor movement, eddy currents etc



Extraction resistors (R): Energy dissipation to resistor, quick transition

**Quench Heaters (QH):** Energy dissipation in coil, heater induced resistance, delay by few ms,



**Extraction resistors (R):** Energy dissipation to resistor, quick transition

**Quench Heaters (QH):** Energy dissipation in coil, heater induced resistance, delay by few ms,



**Extraction resistors (R):** Energy dissipation to resistor, quick transition

**Quench Heaters (QH):** Energy dissipation in coil, heater induced resistance, delay by few ms,



**Extraction resistors (R):** Energy dissipation to resistor, quick transition

**Quench Heaters (QH):** Energy dissipation in coil, heater induced resistance, delay by few ms,



**Extraction resistors (R):** Energy dissipation to resistor, quick transition

**Quench Heaters (QH):** Energy dissipation in coil, heater induced resistance, delay by few ms,



**Extraction resistors (R):** Energy dissipation to resistor, quick transition

**Quench Heaters (QH):** Energy dissipation in coil, heater induced resistance, delay by few ms,



**Extraction resistors (R):** Energy dissipation to resistor, quick transition

**Quench Heaters (QH):** Energy dissipation in coil, heater induced resistance, delay by few ms,



**Extraction resistors (R):** Energy dissipation to resistor, quick transition

**Quench Heaters (QH):** Energy dissipation in coil, heater induced resistance, delay by few ms,



# **Quench modelling**



# Challenges

**Multi domains:** Thermo, Mechanics, Electric, Magnetic **Multi physics:** Coupling of the domains, Software tools **Multi scale:** Filaments (6  $\mu$ m), Strands (1 mm), Cable (1 cm), Magnet (10 m), String (3.2 km)



## **Materials**



#### **Parameters and observables**



**Challenges:** Input uncertainties, modelling uncertainties and uncertainty propagation

## **Quench heater delay**



11T cosine  $\theta$  Nb<sub>3</sub>Sn dipole magnet performance considering input uncertainties

## **Prototype tests**



SM18 test facility, HL-LHC Prototype test, Vertical stations, Horizontal stations

## Prototype tests



A library of magnet performance data, after triggering of the protection measures

## **Cable properties**



Critical values closely satisfying current-field curve at 1.9 and 4.3 K selected from 1E6 Latin Hypercube Samples

# **ROXIE quench model**



Quench initiated at nominal current on block no 10, 12T VE dipole protected with outer layer quench heaters

## The data model

| Input                                           | Source         |
|-------------------------------------------------|----------------|
| Peak current, I <sub>peak</sub>                 | test file      |
| Residual Resistivity Ratio, RRR                 | witness sample |
| Copper-Superconductor Ratio, f <sub>Cu2Sc</sub> | witness sample |
| Max critical Temp., (at $B = 0$ ), $T_{c0}$     | witness sample |
| Max critical field, (at $T = 0$ ), $B_{c20}$    | witness sample |
| Normalization constant, $C_0$                   | witness sample |
| Operating temperature, $T_{op}$                 | quench reports |
| Strand diameter, d <sub>strand</sub>            | witness sample |
| Differential inductance, dL                     | design team    |
| Aperture diameter, <i>d</i> aperture            | design report  |
| Magnet length, L                                | design report  |
| CLIQ current profile, I <sub>CLIQ</sub>         | test file      |
| Dump voltage profile, V <sub>dump</sub>         | test file      |
| Quench-heater current profile, Iquench heater   | test file      |

Output: Current decay, I(t)

MLP Regressor, activation: hyperbolic tangent, 724 hidden layers, 232058 random variables, 0.00858 matrix tolerance

## **1D heat diffusion**



- 1D Cable using 1 mm Finite Elements, Cable length long enough for zero heat flux on either ends
- Quench load (current decay curve)
- Explicit Euler time discretization, adaptive to a maximum temperature rise of 1 K per step

## **Uncertainty management**



Compensating modelling uncertainty using  $\delta$  and  $\sigma_{\epsilon}$ 

## **Data model validation**



24 random cases from 218 test cases and repetition for 50 instances

## **Data model validation**



Quench load sensitivity to input parameters, Measurement vs predictions

# **11T Dipole**



Prediction using MQXF and MBH test data < 1 MA<sup>2</sup>s CLIQ reduces quench load by  $\sim 5~MA^2s$ 

# **12T VE Dipole**



Predicted using MQXF and MBH test data and ROXIE simulations

## Conclusion

- Large set magnet test data to propose a data-driven model update of numerical quench protection studies
- Protection scheme and the magnet operating condition determine the quench protection status
- The input uncertainty results in a peak temperature difference up to 80 K
- $\blacktriangleright$  CLIQ protection reduces quench integral by  $\sim 5~MA^2s$
- 12T VE dipole simulations suggest peak temperature 350 -430 K for the quench heater only protection and below 320 K for combined quench heater and CLIQ protection