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Quench

Quench: Transition from SC to normal conducting state caused
by beam losses, conductor movement, eddy currents etc

Propagation: Normal conducting zone generates Ohmic heat,

Quench und temperature distribution determined by
loss-mechanisms and cooling capacity
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Quench Protection
Extraction resistors (R): Energy dissipation to resistor, quick
transition
Quench Heaters (QH): Energy dissipation in coil, heater
induced resistance, delay by few ms,
Coup. Loss-Ind. Resis. (CLIQ): Coupling loss induced energy
dissipation in coil using oscillating currents
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Quench modelling
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Challenges

Multi domains: Thermo, Mechanics, Electric, Magnetic
Multi physics: Coupling of the domains, Software tools
Multi scale: Filaments (6 xm), Strands (1 mm), Cable (1 cm),
Magnet (10 m), String (3.2 km)

Field computation
B PLoss L

Electrical network
B POhm I

‘ Thermal network ‘
I T R

‘ Critical surface model ‘

|
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Materials

Thermal conductivity

Electrical resistivity

K 500 1000

Volumetric heat capacity

Nb-Ti

1 slorsolnol(swmoa
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Parameters and observables
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Normalization constant, Cy
Operating temperature, Top
Strand diameter, dsyrang
Differential inductance, dL
Aperture diameter, daperture
Magnet length, L

CLIQ current profile , Icpiq
Dump voltage profile, Vgymp
Quench-heater, lyuench heater
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Challenges: Input uncertainties, modelling uncertainties and
uncertainty propagation
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Quench heater delay

QH Delay, 1 ms
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Prototype tests

SM18 test facility, HL-LHC Prototype test, Vertical stations, Horizontal
stations
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Prototype tests
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A library of magnet performance data, after triggering of the
protection measures
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Cable properties
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selected from 1E6 Latin Hypercube Samples
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ROXIE quench model
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The data model

Input

Source

Output:

MLP Regressor, activation: hyperbolic tangent, 724 hidden layers,

Peak current, fpeax

Residual Resistivity Ratio, RRR
Copper-Superconductor Ratio, foyosc
Max critical Temp., (at B = 0), T
Max critical field, (at T = 0), Beog
Normalization constant, Cy
Operating temperature, Top
Strand diameter, dstrang
Differential inductance, dL
Aperture diameter, daperture
Magnet length, L

CLIQ current profile , Ipiq

Dump voltage profile, Vgymp

Quench-heater current profile, lquench heater

test file

witness sample
witness sample
witness sample
witness sample
witness sample
quench reports
witness sample
design team
design report
design report
test file

test file

test file

Current decay, /(1)

232058 random variables, 0.00858 matrix tolerance
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1D heat diffusion

q(l, RRR, CuSc, Beo, Teo)
® & 1 | &  J

1 mm /

» 1D Cable using 1 mm Finite Elements, Cable length long
enough for zero heat flux on either ends

» Quench load (current decay curve)

» Explicit Euler time discretization, adaptive to a maximum
temperature rise of 1 K per step
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Uncertainty management
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Compensating modelling uncertainty using 6 and o
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Data model validation
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Data model validation

Quench load sensitivity to input parameters, Measurement vs

predictions

MIITS, MA?s
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11T Dipol
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Prediction using MQXF and MBH test data < 1 MA?s
CLIQ reduces quench load by ~ 5 MA?s
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12T VE Dipole
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Predicted using MQXF and MBH test data and ROXIE simulations
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Conclusion

» Large set magnet test data to propose a data-driven model
update of numerical quench protection studies

» Protection scheme and the magnet operating condition
determine the quench protection status

» The input uncertainty results in a peak temperature
difference up to 80 K

» CLIQ protection reduces quench integral by ~ 5 MA2s

» 12T VE dipole simulations suggest peak temperature 350 -
430 K for the quench heater only protection and below 320
K for combined quench heater and CLIQ protection
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