μ

g-2

(Work supported by DOE)

Beam Dynamics of the Muon g-2 Experiment

Eremey Valetov Michigan State University On behalf of the Muon g-2 Collaboration

ICAP 2024, Seeheim, Germany – October 4th, 2024

Muon Anomalous Magnetic Dipole Moment (a_{μ})

 $\mu = g \frac{e}{2m} s$ Gyromagnetic ratio equation

Classical: g = 1

Dirac Equation:
$$g = 2$$

 $i \left(\partial_{\mu} - i e A_{\mu}(x) \right) \gamma^{\mu} \psi(x) = m \psi(x)$

Interactions w/ quantum foam: g > 2

Introduction

The Muon g-2 Storage Ring

If g=2, the angle between the magnetic moment and the momentum does not change. If g>2, the angle between the magnetic moment and the momentum changes linearly.

Result from Runs 1-3

Quantity	Correction [ppb]	Uncertainty [ppb]
$\overline{\omega_a^m}$ (statistical)	_	201
ω_a^m (systematic)	_	25
$\overline{C_e}$	451	32
C_p	170	10
\overline{C}_{pa}	-27	13
C_{dd}	-15	17
C_{ml}	0	3
$f_{\rm calib} \langle \omega_p'(\vec{r}) \times M(\vec{r}) \rangle$	_	46
B_k	-21	13
B_q	-21	20
$\mu_{p}'(34.7^{\circ})/\mu_{e}$	_	11
m_μ/m_e	_	22
$g_e/2$	—	0
Total systematic	_	70
Total external parameters	_	25
Totals	622	215

 a_{μ} (FNAL) = 0.00 116 592 055(24) [203 ppb] a_{μ} (Exp) = 0.00 116 592 059(22) [190 ppb]

a_u (Th) = 0.00 116 591 810(43) [370 ppb] (Review by Keshavarzi, 2022)

a_{μ} Formula

E-field Correction

Pitch Correction

 \blacktriangleright Average pitch angle relative to $B_{\nu}\vec{e_{\nu}}$

$$C_{\rm p} = \frac{n_0}{2{\rho_0}^2} \langle y^2 \rangle = 170(10) \text{ ppb}$$

 ρ_0 : reference radius

Muon Loss Correction

Muon Loss Correction

$$\frac{d\varphi_0}{dt} = \frac{d\varphi_0}{d\langle p \rangle} \frac{d\langle p \rangle}{dt}$$

$$C_{\rm ml} = 0(3) \, \rm ppb$$

[mrad]

Phase Acceptance Correction

 $C_{\text{pa}} = -27(13) \text{ ppb}$

A non-trivial **correlation** between the **muon decay radial and vertical position** within the 9-cm-diameter storage volume **and** the **detector acceptance vs. the spin orientation** of the muon at the time of its decay

- Formerly a high-priority topic
- A 10 billion event simulation-based study was performed (Kim Siang Khaw, ..., Eremey Valetov, ...)
- Custom NERSC simulation
 workflow

Muon Campus and Storage Ring Simulation Codes

gm2ringsim

- Custom simulation tool
- Based on geant4
- **FHiCL** configuration language
- **art** event processing
- Extensive custom source code including geometry, storage ring modules, etc.

COSY INFINITY

- The most accurate storage ring model
- High-order DA transfer maps
- Accurate, Maxwellian fringe fields
- Symplectic tracking
- Electrostatic quadrupole multipole expansion up to order 24
- Heavy duty long-term tracking

BMAD

- Similar to **MAD**, with substantial expansions
- The storage ring and the Muon Campus
- Custom pion decay code

G4beamline

- Model of the Muon Campus beamlines and target station
- Based on geant4
- Comprehensive physics and geometry modeling, compared to BMAD
- Overlapping coordinate system limitation in ring lattice modeling

MARS

- A highly accurate Monte Carlo code for modeling of radiation transport and interaction with matter
- Used for the Muon *g*-2 **target station**

High-Performance Tracking for Large Phase Space Distributions

 2×10^8 muon simulation for Fourier analyses studies

Nonlinear Transfer Map and Differential Algebras

Linear transfer map

Differential Algebras (DA): algebras operating on objects equivalent to truncated Taylor expansions

- Include integration and differentiation operators
- COSY INFINITY has highly optimised DA data types

Analytical Calculation of Aberrations, Tunes, and Chromaticities

1. Analytic aberrations formula:

- Order-by-order perturbation method
- Use transfer map methods:

$$\frac{d}{ds}\vec{r} = M(s)\vec{r} + \sum_{j=2}^{+\infty}N_j(\vec{r},s)$$

Modern Control Systems There are

One beamline element: partwise M(s) = const: $\vec{r}_{f} =_{1} \exp(Ms)\vec{r}_{i}$ 2. Obtain the transfer map for one turn around the storage ring by composition

(a)

1.

3. Calculate the tunes: 1. (...

$$Q_{x,y} = \frac{1}{2\pi} \arccos\left(\frac{\operatorname{tr}(M_{x,y})}{2}\right)$$

4. Calculate the chromaticities: (*Long formula in terms of first and second–order transfer map elements*)

Muon g-2 Storage Ring Chromaticity

	otes on Chroman	.city – Overview	For the second order horizontal DIQ aberrations, we obtained		$(a xx) = h^3 \vartheta^{-1} n \left(\sin \left(\vartheta s \right) + \right)$	$\sin(2\eta_s))$
G Minus 2 Experiment Document 29571 Eremey Valetov, Martin Berz, and Kyoko Makino		$(x xx) = -2\hbar^3\vartheta^{-2} \left(1 - 3n + (1 - 2n)\cos(\vartheta s)\right)\sin^2(\vartheta s/2),$	(13a)	$(a xa) = h^3 \vartheta^{-2} n \left(\cos\left(\vartheta s\right) - \frac{1}{2}\right)$	$\cos(2\vartheta s)),$	
		$ \begin{array}{l} (x xa) = n \ \theta & (n+(1-2n)\cos(\theta s))\sin(\theta s), \\ (x aa) = 2h^3 \vartheta^{-4} \left(n+(1-2n)\cos(\vartheta s)\right)\sin^2(\vartheta s/2), \end{array} $	(136) (13c)	$(a aa) = h^{\delta}\vartheta^{-3}(3n - 1 - 2n)$ $(a x\delta_K) = \frac{1}{2}h^4\vartheta^{-3}n\gamma_0^{-1}(1 + 1)$	$i \cos (\vartheta s) \sin (\vartheta s)$, - $\gamma_0)^{-1}$.	
	November 1	15, 2023	$(x x\delta_K) = h^4 \vartheta^{-n} \sigma_1^{-1} (1 + \eta_0)^{-1}$, $\cdot \sin(\vartheta_S/2s)(\vartheta n_S (n - 1 + (2 + n) \gamma_0^2) \cos(\vartheta s/2) - 2\gamma_0^2 (3n - 1 + (2n - 1) \cos(\vartheta s)) \sin(\vartheta s/2)),$	(13d)	$\frac{2}{\vartheta s} \left(\gamma_0^2 (n+2) + n + \sin \left(\vartheta s \right) \left(n - 1 - 4 \right) \right)$	$ -1 \cos \left(\vartheta s \right) + 4 \gamma_0^2 \cos \left(\vartheta s \right) - \gamma_0^2 \left(n-2 \right) \right) , $
Depar	Horizontal Aberrations of the Muon $g-2$ High Voltage Electrostatic Quadrupole With Superimposed Dipole Field		$ \begin{aligned} &(x a\delta_{K}) = \frac{1}{2}h^{4}\vartheta^{-5}\gamma_{0}^{-1}\left(1+\gamma_{0}\right)^{-1} \cdot \\ &\cdot \left(n\sin\left(\vartheta s\right)\left(n-1+\left(2-n\right)\gamma_{0}^{2}\right)-\right. \\ &\left\cos\left(\vartheta s\right)\left(\vartheta ns\left(n-1+\left(n+2\right)\gamma_{0}^{2}\right)+2\left(1-2n\right)\gamma_{0}^{2}\sin\left(\vartheta s\right)\right)\right), \end{aligned} $	(13e)	$(a a\delta_K) = \frac{1}{2}h^4 \vartheta^{-4} n \gamma_0^{-1} (1 + (\vartheta s (\gamma_0^2 (n+2) + n)))$ $(a \delta_K \delta_K) = h^5 \vartheta^{-5} (1 + \gamma_0)^{-1}$	$(\gamma_0)^{-1} \cdot$ $(\gamma_0)^{-1} \cdot$
	G Minus 2 Experiment Document 29657		$(x \delta_K \delta_K) = h^2 \vartheta^{-r} (1 + \gamma_0)^{-2}$ $\cdot \sin(\vartheta/2) (2h^2 (n - 1) n_S (n - 1 + (n + 2) \gamma_0^2) \cos(\vartheta s/2) + 2\vartheta (n^2 - 1 + (6n - 1) \gamma_0^2 + (2n - 1) \gamma_0^2 \cos(\vartheta)) \sin(\vartheta s/2)),$	(13f)	$(\sin (vs))(2\gamma_0^2 n \cos -\vartheta ns(\gamma_0^2(n+2) + d(\delta_{tr} z_i, z_i)) = 0$ for all i_i and i_0 .	$(\vartheta s) + \gamma_0 n^2 + n - 1) n - 1) \cos(\vartheta s)),$
Introduction	Erem	ey Valetov, Martin Berz, and Kyoko Makino	$\operatorname{arra}(v_K _{j_1 \neq j_2}) = v \text{ for an } j_1 \text{ arra } j_2.$			
derived analytic form the voltage electrostatic (December 4, 2023				
strostatic quadrupole [7 ults. We used the follow	Departmen	at of Physics and Astronomy, Michigan State University	Excell	ent agre	eement hetw	een analytic
l. "Modular ring" (DI	Chromaticity of the Muon $g-2$ Storage R					
	Cont	G Minus 2 Experiment Document 29717	IOT	mulas a	and COSY II	NETNTIA
	1 Intr	Eremey Valetov, Martin Berz, and Kyoko Makino	Model DIEQ			
	2 Equ 3 Ord	December 10 2023				(-)
	3 Ord	December 10, 2020			Method	$\xi_x^{(p)}$
	3 Ord 4 Cor 4.1 4.2	Comments on E989 Note	167		Method Valetov, analytic COSY INFINITY	$\frac{\xi_x^{(p)}}{-0.1423355243040865}$ -0.1423355242929523
	3 Ord 4 Cor 4.1 4.2	Comments on E989 Note G Minus 2 Experiment Document 2XX	167 xx Model DIQ360	0	Method Valetov, analytic COSY INFINITY	$\frac{\xi_x^{(p)}}{-0.1423355243040865} \\ -0.1423355242929523$
	3 Ord 4 Cor 4.1 4.2 Contents	Comments on E989 Note G Minus 2 Experiment Document 2XX Eremey Valetov, Martin Berz, and Kyo	ko Makino Model DIQ360	0	Method Valetov, analytic COSY INFINITY Method	$\frac{\xi_x^{(p)}}{-0.1423355243040865} \\ -0.1423355242929523$
,	3 Ord 4 Cor 4.1 4.2 Contents 1 Introduction 1.1 Coordinate	Comments on E989 Note G Minus 2 Experiment Document 2XX Eremey Valetov, Martin Berz, and Kyo December 11, 2023	ko Makino Model DIQ360	0	Method Valetov, analytic COSY INFINITY Method Valetov, analytic	$\frac{\xi_x^{(p)}}{-0.1423355243040865} \\ -0.1423355242929523$ $\frac{\xi_x^{(p)}}{-0.14798273032639034}$
	3 Ord 4 Cor 4.1 4.2 Contents 1 Introduction 1.1 Coordinate 1.2 Notation.	Comments on E989 Note G Minus 2 Experiment Document 2XX Eremey Valetov, Martin Berz, and Kyc December 11, 2023	xx Model DIQ360	0	Method Valetov, analytic COSY INFINITY Method Valetov, analytic COSY INFINITY	$\frac{\xi_x^{(p)}}{-0.1423355243040865}$ -0.1423355242929523 $\frac{\xi_x^{(p)}}{-0.14798273032639034}$ -0.1479827303376410
	3 Ord 4 Cor 4.1 4.2 Contents 1 Introduction 1.1 Coordinate 1.2 Notation.	Comments on E989 Note G Minus 2 Experiment Document 2XX Eremey Valetov, Martin Berz, and Kyc December 11, 2023 Department of Physics and Astronomy, Michigan	167 xx ko Makino State University	0	Method Valetov, analytic COSY INFINITY Method Valetov, analytic COSY INFINITY	$\frac{\xi_x^{(p)}}{-0.1423355243040865}$ -0.1423355242929523 $\frac{\xi_x^{(p)}}{-0.14798273032639034}$ -0.1479827303376410
	3 Ord 4 Cor 4.1 4.2 Contents 1 Introduction 1.1 Coordinate 1.2 Notation.	Comments on E989 Note G Minus 2 Experiment Document 2XX Eremey Valetov, Martin Berz, and Kyc December 11, 2023 Department of Physics and Astronomy, Michigan	167 xx ko Makino State University Model DIQ360 Model DIQ360	0 2_ON	Method Valetov, analytic COSY INFINITY Method Valetov, analytic COSY INFINITY	$\frac{\xi_x^{(p)}}{-0.1423355243040865}$ -0.1423355242929523 $\frac{\xi_x^{(p)}}{-0.14798273032639034}$ -0.1479827303376410
	3 Ord 4 Cor 4.1 4.2 Contents 1 Introduction 1.1 Coordinate 1.2 Notation.	Comments on E989 Note G Minus 2 Experiment Document 2XX Eremey Valetov, Martin Berz, and Kyc December 11, 2023 Department of Physics and Astronomy, Michigan Contents	167 xx ko Makino State University Model DIQ360 Model DIQ360	0 2_ON	Method Valetov, analytic COSY INFINITY Method Valetov, analytic COSY INFINITY Method	$\frac{\xi_x^{(p)}}{-0.1423355243040865} \\ -0.1423355242929523$ $\frac{\xi_x^{(p)}}{-0.14798273032639034} \\ -0.1479827303376410$ $\frac{\xi_x^{(p)}}{-0.1479827303376410}$
	3 Ord 4 Cor 4.1 4.2 Contents 1 Introduction 1.1 Coordinate 1.2 Notation.	Comments on E989 Note G Minus 2 Experiment Document 2XX Eremey Valetov, Martin Berz, and Kyc December 11, 2023 Department of Physics and Astronomy, Michigan Contents 1 Introduction 1.1 Transfer Maps and Aberrations	167 xx ko Makino State University Model DIQ360 Model DIQ360	0 2_ON	Method Valetov, analytic COSY INFINITY Method Valetov, analytic COSY INFINITY Method Valetov, analytic COSY INFINITY	$\frac{\xi_x^{(p)}}{-0.1423355243040865} \\ -0.1423355242929523$ $\frac{\xi_x^{(p)}}{-0.14798273032639034} \\ -0.1479827303376410$ $\frac{\xi_x^{(p)}}{-0.16005036841645803} \\ -0.16005036841645803$

Excellent agreement between analytic formulas and *COSY* **INFINITY**

Model DIEQ		
	Method	$\xi_x^{(p)}$
	Valetov, analytic COSY INFINITY	$\begin{array}{c} -0.1423355243040865 \\ -0.1423355242929523 \end{array}$
Model DIQ360		
	Method	$\xi_x^{(p)}$
	Valetov, analytic COSY INFINITY	$\begin{array}{r} -0.14798273032639034 \\ -0.1479827303376410 \end{array}$
Model DIEQ_ON		
	Method	$\xi_x^{(p)}$
	Valetov, analytic COSY INFINITY	$\begin{array}{c} -0.16005036841645803 \\ -0.1600503684287856 \end{array}$

Amplitude Dependent Tune Shifts

A. Weisskopf, D. Tarazona, M. Berz, Int. Journal of Modern Physics A, 34, 36 (2019) 1942011. DOI: 10.1142/S0217751X19420119

- **COSY INFINITY** provides automatic conversion to nonlinear normal form coordinates
- Normal forms: dynamics described by constant angle advancement, which is dependent on the amplitude and parameters in a straightforward way

Symplectic Tracking

COSY INFINITY ensures preservation of phase space volume in simulation of the Muon g-2 storage ring using symplectic tracking

Symplectic tracking for the full Hamiltonian without approximations is generally one of the most challenging topics in beam dynamics simulations

Normal form horizontal transverse amplitude vs. the number of turns for a test case of a cell defined as the 45° electrostatic deflector of radius 1 m. A set of rays is tracked without symplectification (left) and with symplectification (right).

E. Valetov, M. Berz, Advances in Imaging and Electron Physics, 213, 6 (2020). DOI: 10.1016/bs.aiep.2019.11.007

Conformal Mapping Methods

Advantages of conformal mappings for field calculations

Image credit: Peter Baddoo.

Fully Maxwellian

Possibility or rapid recalculations (e.g., for voltage asymmetries or plate offsets)

Data Acquisition as a Multiple of BNL Data

Conclusion

- ➢ Results based on Runs 2-3 were published in August 2023
- The experiment has completed its final Run 6 in July 2023
 - ➢ 21x more raw data than the Muon g-2 Experiment at BNL
 - > Improving systematics:
 - Magnet temperature control
 - Magnetic field noise control
 - Analysis improvements (pileup reconstruction)
 - > Achieved the TDR goal of 70 ppb systematic error
- ➤ Results from runs 4-6 planned to be released in 2025
 - > We derived chromaticity formulas to support the analyses
- ≻ New theory results expected in 2025

Conclusion

Muon g-2 Collaboration

7 countries, 33 institutions, 182 collaborators

Collaboration meeting at University of Liverpool, July 2023 Photo credit: McCoy Wynne

USA Boston

- Cornell
- Illinois
- James Madison
- Kentucky
- Massachusetts
- Michigan
- Michigan State
- Mississippi
- North Central
- Northern Illinois
- Regis _
- Virginia
- Washington _

USA National Labs

- Argonne
- Brookhaven
- Fermilab _

182 collaborators **33** Institutions 7 countries

Germany

Dresden Mainz _

- Frascati _
- Molise
- Naples
- Pisa
- Roma Tor Vergata
- Trieste _
- Udine

CAPP/IBS _

Russia

- Budker/Novosibirsk _
- JINR Dubna _

United Kingdom

- Lancaster/Cockcroft
- Liverpool
- Manchester
- University College London

The Center for Beam Theory and Dynamic Systems at Michigan State University acknowledges support from the U.S. Department of Energy, Office of Science, under Contracts No. DE-FG02-08ER41546 and DE-SC0018636.
This document was prepared by the Muon g-2 collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

• This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

• This research was done using resources provided by the Open Science Grid, which is supported by the National Science Foundation award 1148698, and the U.S. Department of Energy's Office of Science.