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== 0mmMotivation and content

• Simulations of slow extraction process mainly for two purposes.

1. Estimation of uncontrolled particle loss.

2. Description of spill structures, in particular spill micro structures.

• Computational requirements for both types of simulations are different.

• Show example of slow extraction in future heavy ion synchrotron SIS100 of FAIR project.
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== 0mmHeavy ion synchrotron SIS100

• Six fold symmetry, circumference: C = 1083.6 m:

5 × circumference of present GSI heavy ion synchrotron SIS18.

• Maximum rigidity: (Bρ)max = 100 Tm.

• Reference ion U28+ with maximum beam energy E = 2.7 GeV/u.

→ Example for this study.

• Many magnets with superconducting coils and iron yokes:

108 main dipoles, 166 main quadrupoles (+ two normal conducting, which are radiation

hard), 42 sextupoles for chromaticity correction. In addition, some super conducting

corrector magnets. Consequences:

– Magnets less radiation resistant because of possible quench.

– Magnet imperfections due to misalignment and magnetic field errors with systematic

components due to magnet design and random components.

• In addition, several normal conducting magnets, e.g. six sextupoles for 3rd integer

resonance excitation.
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== 0mmSlow extraction

• Slow extraction based on excitation of 3rd integer

resonance with sextupoles. SIS100: Qx,r = 17.33333.

• Formation of triangular stable phase space area, i.e. be-

tatron motion stable inside and unstable outside, limited

by straight separatrices.

• Corners: unstable fixed points (UFPs) of betatron

motion with modulus in normalised variables
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• Particles leave successively beam along separatrices when betatron motion exceeds

stable phase space area.
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== 0mmSlow extraction in SIS100

Slow extraction techniques foreseen in SIS100:

1. KO extraction:

Based on increasing horizontal beam width by beam excitation with horizontal rf field

until each particle’s emittance exceeds stable phase space area.

2. Constant Optics Slow Extraction (COSE) [1]:

• Tune sweep technique, i.e. machine tune Qx,m = Qx,m(t) moved across resonance

tune resulting in slow shrinkage of stable phase space area.

• Tune sweep can be performed with dedicated quadrupoles, e.g. SIS18.

• COSE:

– ALL magnets are changed such that their strengths correspond to time dependent

momentum deviation δc(t) which fulfils condition Qx,m(t) = Qx,m(0) + ξxδc(t).

– Result: all particles extracted with same lattice functions, i.e. “constant optics”.

– Simulation: Adding δc offset to all particles in each revolution instead of changing

magnets.

– Example in this presentation.
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== 0mmBeam loss simulations

Simulation requirements:

• Need sufficiently large particle number to resolve clearly tolerable uncontrolled particle

loss ploss,max ∼ 1 % → requires particle number Np ≥ 1000.

• Look only for accumulated number of lost particles

→ moderate simulation interval Nrev ∼ 10000 sufficient.

• Slow extraction: try to “loose” particles by passing through extraction septum and to

avoid uncontrolled losses by hitting septum or other apertures.

– Need for precise definition of lattice functions by the lattice model.

→ Thin lens tracking with slicing thick elements in sufficient thin elements.

– Need for using lattice with all apertures.

Computational demands determined by lattice characteristics.

p. 6



== 0mmBeam loss simulations

Tracking with thin lens tracking module of MADX code. Apply several different samples of

random magnet imperfections.

Step 1: Optimisation of sextupole settings according to sample of random magnet errors

• Sextupol strengths defined by

(k2L)m = (k2L)a sin

[

4π
m− 1

6
+ φsx

]

, m = 1, ... , 6

• Optimise φsx to find optimal orientation of stable phase space area with trial and error

procedure and single particle tracking.
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== 0mmBeam loss simulations

Tracking with thin lens tracking module of MADX code. Apply several different samples of

random magnet imperfections.

Step 2: Multi-particle tracking

• Np = 1000, Nrev = 31000 (25000 for extraction, 6000 before for switching on sextupoles)

• 10 slices per quadrupole and dipole → in total 5156 thin elements (Twiss output).

(Many elements thin before slicing, e.g. multipoles, markers, collimators etc.)
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• Computational effort: Each simulation with duration ≈ 2 h on normal PC due to large

lattice although particle and revolution numbers moderate. Hence, multi-variable opti-

misation with multi particle tracking (talk O. Kazinova) time consuming.
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== 0mmSpill structure simulations

Major aim: Determination of spill micro structures

• Structures usually generated by ripples in magnets from power supplies, in particular

quadrupoles.

• Typical frequencies between fmin ∼ 10 Hz and fmax ∼ 10 kHz.

– Too high for correction with feedback system.

– Much lower than revolution frequency.

• Requirements: resolution of time distribution of extracted particles.

Simulation requirements:

• Sufficient particle number to resolve ripples.

• Realistic simulation interval.
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== 0mmSpill structure simulations

Applied simulation conditions

• Extraction interval: text = 150000 rev. = 0.56 s.

• Total particle number: Np = 100000.

Particle ensemble split into ten sub-ensembles of 10000 particles.

• Resulting extraction rate: Ṅp = 1.8 · 105 s−1.

Typical extraction rate in measurements at SIS18: Ṅp = 106 s−1.

→ Limit due to plastic scintillation counter which enables highest resolution.

• Spill recording in time bins of trec = 3 trev = 11.1 µs.

→ actual sampling rate in measurements.

• Neglect random magnet errors.

Extraction interval and total particle number denote minimum requirement because

• Shortest slow extraction with duration t = 0.5 s.

• Provides in average two particles per recording bin which is sufficient to distinguish

between spill quality defined by extraction rate (Poisson limit) and “real” spill quality.
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== 0mmSpill structure simulations

Time dependent duty factor

F (t) =
〈Np(t)〉2
〈N 2

p(t)〉
=

N 2
p,av(t)

N 2
p,av(t) + σ2p(t)

where 〈x〉 is average of variable x recorded in recording time bins trec = 11.1 µs in averaging

time bins tave = 10 ms.

• F is measure for uniformity of particle number in recording bins.

• Counting particles due to low extraction rate and plastic scintillator enables determination

of Poisson limit of F :

FP(t) =
Np,av(t)

Np,av(t) + 1

– Limit of for random particle extraction within tave →maximum for realistic conditions.

– Pure function of extraction rate Np,av(t).
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== 0mmSpill structure simulations

Spill
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• Ripple on strengths of main quadrupoles:

Sinusoidal component with f = 600 Hz

and white noise contribution with band

width fBW = 10 kHz.

• 600 Hz signal well visible on spill.

• Non-uniform extraction rate reduce duty

factor below Poisson limit.
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== 0mmSpill structure simulations

Computational effort:

• 1000 particles, 6000 + 25000 revs.: tsim = 1 : 54 h.

• 1000 particles, 6000 + 150000 revs.: tsim = 10 : 10 h.

Spill simulation with 100000 particles would require 100 simulations: tsim ≈ 1000 h.

Question: Are there ways to reduce simulation time?
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== 0mmSpill structure simulations

Computational effort:

• 1000 particles, 6000 + 25000 revs.: tsim = 1 : 54 h.

• 1000 particles, 6000 + 150000 revs.: tsim = 10 : 10 h.

Spill simulation with 100000 particles would require 100 simulations: tsim ≈ 1000 h.

Question: Are there ways to reduce simulation time?

Yes, because lower requirement to precision of lattice and losses only at ES.

• Reduce number of slices per thick element to 5: tsim = 9 : 22 h.

100 simulations: tsim ≈ 930 h.

• In addition, remove collimator elements: tsim = 5 : 47 h.

100 simulations: tsim ≈ 580 h.

• In addition, remove all apertures except ES: tsim = 4 : 58 h.

100 simulations: tsim ≈ 500 h.

In reality, spill simulations performed by tracking 10 times 10000 particles: tsim ≈ 30 h.

• 10 simulations: tsim ≈ 300 h.
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== 0mmSummary

• Slow extraction simulations done mainly for two purposes: estimation of uncontrolled

particle loss and description of spill structures, in particular spill micro structures, demon-

strated with SIS100 example.

• Both purposes with different requirements to simulations leading to computational effort.

• Beam loss simulations: Long computing time due to comprehensive, large SIS100 lattice

with many apertures in spite of moderate particle number and simulation interval.

• Spill structure simulations: particle number and time interval significantly larger than in

beam loss simulations → Computing time significantly larger.

– Acceptable computing time achieved by less precise lattice and removing apertures

except electrostatic septum.

– Requirement: marginal particle loss at other apertures.
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== 0mm

Thank you for your attention.
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== 0mmCOSE in SIS100

Courtesy: D Ondreka, GSI.

• Simultaneous extraction of particles with different δ.

• Separatrices for particles with different δ should cross ES at similar x
′ → low losses.

• Hardt condition: shifts of separatrix due to chromaticity and dispersion compensate each

other.

• SIS100: Large systematic decapole component and dispersion in dipoles leads to δ

dependent octupole by feed and bent separatrices.

→ Can be used for adjusting separatrices to the same x
′
at ES [2].

• COSE: Keep separatrices adjusted without complicated time dependent correction.
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== 0mmHénon map simulation

Hénon map: motion of each particle in horizontal phase space determined by:
(

Xn+1

X
′
n+1

)

=

(

cosψ sinψ

− sinψ cosψ

)(

Xn

X
′
n + SvirtX

2
n

)

with betatron phase advance per revolution ψ = 2π(Qm + ξδ) and virtual sextupole Svirt.

Replace whole lattice with rotation matrix resulting in much faster simulation. But

• Vertical particle motion neglected.

• Works well if machine is linear, e.g. SIS18, CERN-SPS [3,4].

• SIS100:

– Strong reduction of horizontal chromaticity ξx,nat = −27 → ξx = −3 with

sextupoles which do not contribute to Svirt but reduce dynamic aperture.

– Spiral steps modified with octupoles.

Check carefully because size and number of steps from stable phase space area to

extraction septum have strong influence on spill micro structures [5,6].
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