

Cheetah: A High-speed Differentiable Beam Dynamics Simulation for Machine Learning Applications

Chenran Xu on behalf of all contributors

2024, 14th International Computational Accelerator Physics Conference

www.kit.edu

What is Cheetah?

A Beam Dynamics Simulation Python Package

Two main features in support of ML applications

- Ultra-fast compute: Cheetah can run order of magnitude faster than some other codes (at the cost of fidelity)
- Differentiability: Based on PyTorch, Cheetah supports automatic differentiation for all its computations
- Cheetah provides full GPU support and integrates seamlessly with ML models built in PyTorch
- Designed to be easy to use and easy to extend.
 - We generally aim for high **code quality**!
 - Black / isort code formatting + flake8 conformity enforced.
 - Encourage proper procedures in GitHub repository (automatic tests / PR templates, good documentation etc.)

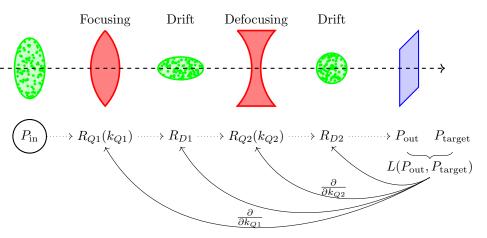
pip install cheetah-accelerator ••• beam in = ParticleBeam.from astra("beam in.ini") segment = Segment(Drift(length=torch.tensor(0.2)), Quadrupole(length=torch.tensor(0.2), name="Q1"), Drift(length=torch.tensor(0.4)), Quadrupole(length=torch.tensor(0.2), name="Q2"), Drift(length=torch.tensor(0.2)),

Change the magnet strengths
segment.Q1.k1 = torch.tensor(10.0)
segment.Q2.k1 = torch.tensor(-9.0)

Tracking through the segment beam_out = segment.track(beam_in)

Beam Tracking Implementation

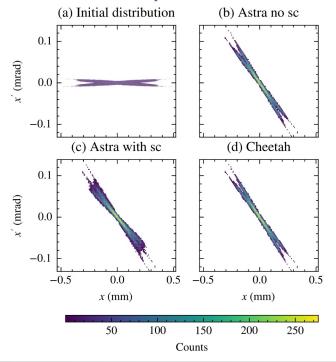
- Cheetah uses ParameterBeam (Gaussian beam envelope) and ParticleBeam
- ParticleBeam contains an array of macroparticles. Each particle is represented using the 6d canonical coordinates

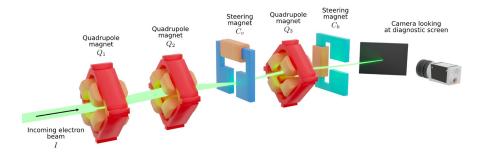

$$\boldsymbol{x} = (x, p_x, y, p_y, z, \delta)^{\mathsf{T}}$$

For each lattice element in Cheetah, the linear transfer matrix is implemented

$$P_{\text{out}} = P_{\text{in}}R^{\intercal}$$

Tracking method of the elements can be easily overwritten, allowing customizable tracking fidelity


Example: beam tracking through a FODO lattice in linear order


Automatic-differentiation

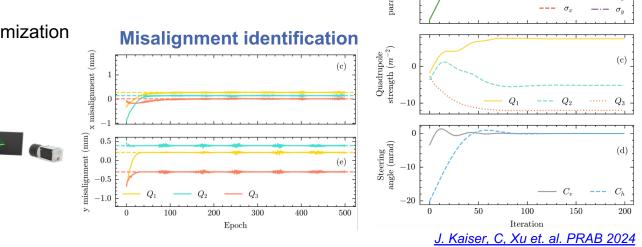
Cheetah Tracking Examples

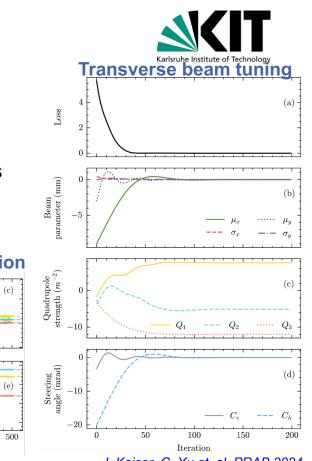
Test bunch phase space through the ARES Experimental Area

5

Step compute times through the ARES Experimental Area

Code	Comment	Laptop	HPC node
ASTRA	space charge	264000.00	3605000.00
	no space charge	109000.00	183000.00
Parallel ASTRA	space charge	39000.00	17300.00
	no space charge	16900.00	12600.00
Ocelot	space charge	22100.00	21700.00
	no space charge	182.00	119.00
$\operatorname{Bmad-X}$		40.50	74.30
Xsuite	CPU	0.81	2.82
	GPU	-	0.57
Cheetah	ParticleBeam	1.60	2.95
	ParticleBeam + optimisation	0.79	0.72
	ParticleBeam + GPU	-	4.63
	ParticleBeam + optimisation + GPU	-	0.09
	ParameterBeam	0.76	1.29
	ParameterBeam + optimisation	0.02	0.04

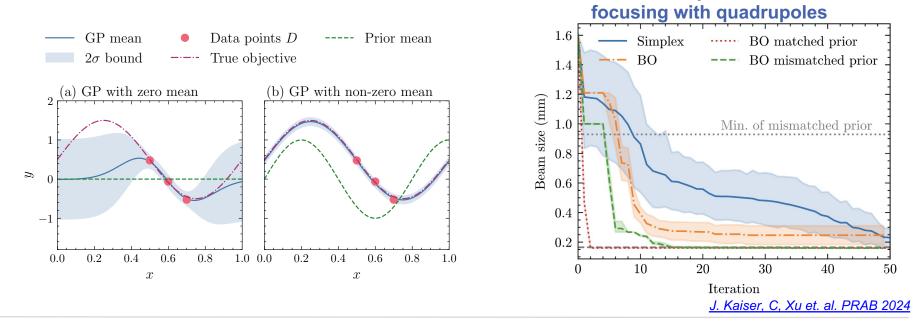

What can you do with it?


Utilizing Cheetah's Differentiability

- Applying gradient-based algorithms with the gradients computed from the automatic-differentiation
- Efficient optimization with a large number of input parameters
- Example use cases:

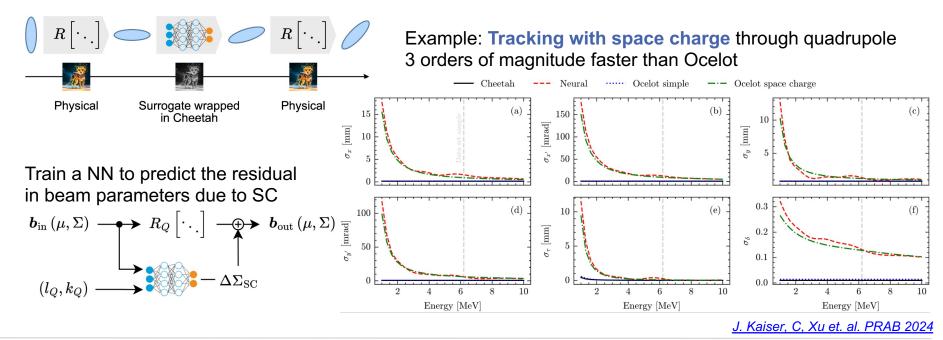
7

- Simulated accelerator optimization
- System identification


Providing Prior Information for Efficient Optimization

Cheetah currently only contains limited physical effect (low-fidelity)

8


 Using Chetah as physics-informed prior mean for Bayesian optimization (BO) allows more efficient parameter optimization
 Simulated optimization of beam

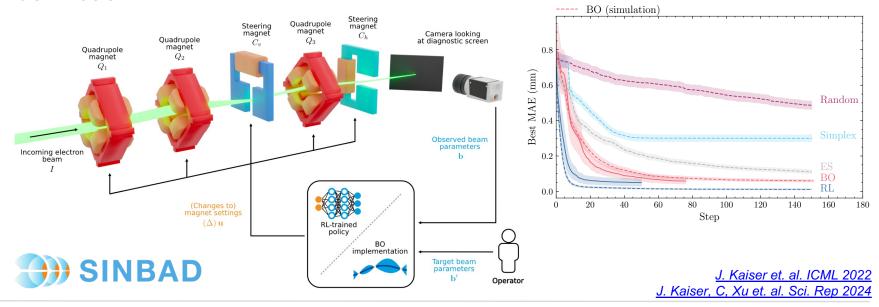
Seamless Integration with Modular Surrogate Models

Neural networks implemented in PyTorch are effectively native to Cheetah
 Differentiability is preserved and integration is easy.

Fast Training Environment for Reinforcement Learning

Simplex (simulation)

ES (simulation)

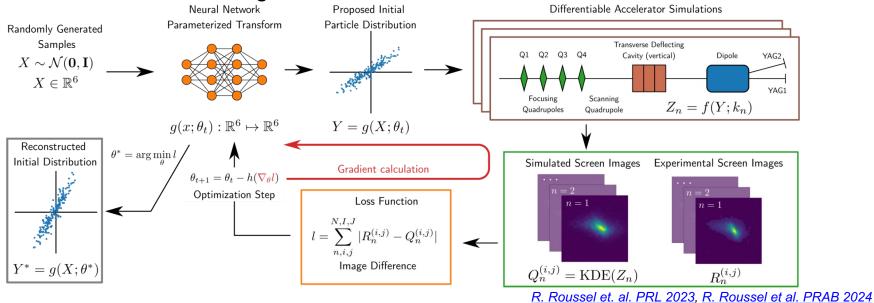

Random search (simulation)

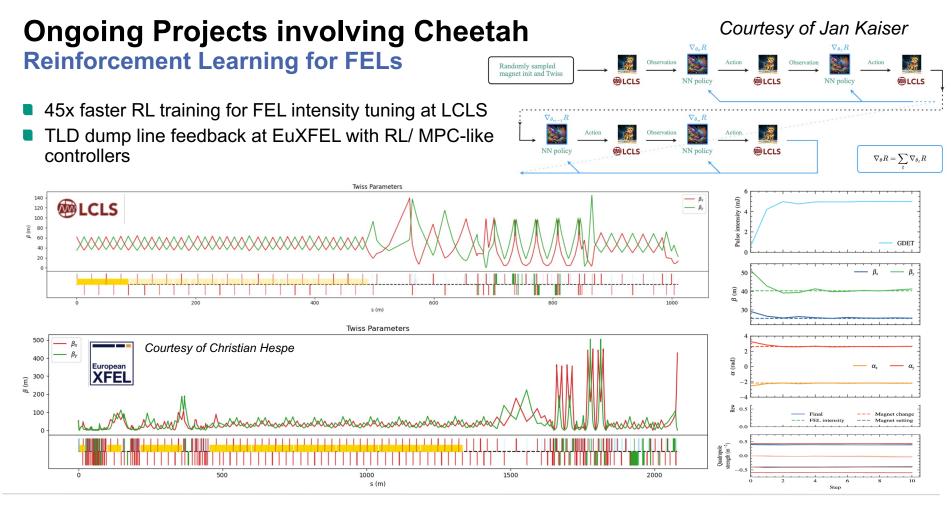
RL (real world)

RL (simulation)

BO (real world)

- Training a proof-of-principle RL controller at ARES
- Deploy a RL-trained optimizer to the real-world with zero-shot learning thanks to domain randomization.


Ongoing Work


Ongoing Projects involving Cheetah

Generative Phase Space Reconstruction (GPSR)

Courtesy of Ryan Roussel and J. P. Gonzalez-Aguilera

- Previously developed at SLAC using Bmad-X differentiable simulator
- Ported to Cheetah for faster reconstruction using vectorised computations and GPU acceleration
- Bmad-X features have been integrated into Cheetah

Ongoing Projects involving Cheetah Fast FEL Modeling

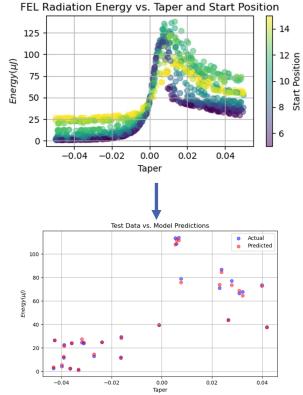
- Coupled neural network surrogate model for predicting FEL output trained from GENESIS simulations Much faster FEL simulation
- Prototype predicting FEL output from Twiss and taper

Machine Configuration

Undulator taper:

 $K = K_0(1 - A(z - z_s))$ $-B(z - z_s)^2)$

Inputs


Electron beam

Twiss parameters:

 $\alpha_x, \alpha_y, \beta_x, \beta_y, \varepsilon_x, \varepsilon_y$

Courtesy of Jenny Morgan

Test case: linear taper

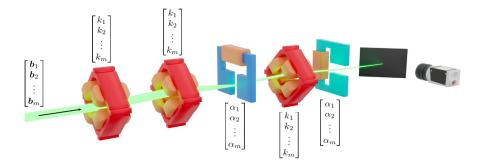
Genesis Simulation

Neural

Network

Outputs

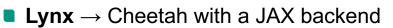
FEL Radiation:


Energy, bandwidth

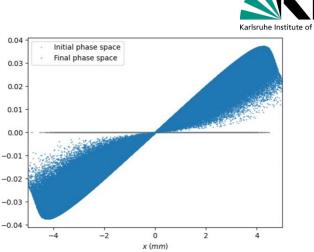
Cheetah Development

- Vectorized Cheetah \rightarrow near-final version available on master branch, soon v0.7
 - Concurrent simulation of different actuator settings and beams
 - About 50x speed-up on CPU, expected to be even faster on GPU
 - Automatic PyTorch broadcasting

- Merge features of Bmad-X \rightarrow on master, soon v0.7
 - Higher order effects (from Taylor maps) in quadrupoles, dipoles, drift and transverse deflecting cavities



By J. P. Gonzalez-Aguilera


R. Roussel et. al. LINAC2024

Cheetah Development

- Space charge \rightarrow available on master branch, soon v0.7
 - First backwards differentiable space charge implementation
 - Investigate memory requirements and scalability of automatic differentiation

- Expected to be faster thanks to **JIT** compilation
- Support for **forward mode** auto-diff
- Possibly suited for scientific computing

px (MeV/c)

By Remi Lehe, Axel Huebl, and Grégoire Charleux

By Jan Kaiser

R. Roussel et. al. LINAC2024

People Involved

A successful collaboration!

Christian Hespe

Jan Kaiser

Annika Eichler



J. P. Gonzalez-Aguilera

03.10.24

17

A. Santamaría García

Grégoire Charleux Axel Huebl

Remi Lehe

Auralee Edelen Jenny Morgan

Get Started with Cheetah

Checkout the GitHub repository and try the latest version v0.7 pre-release

https://github.com/desy-ml/cheetah

• Or directly install the stable version v0.6.3

- Or Read the paper:
 - Jan Kaiser, Chenran Xu, Annika Eichler and Andrea Santamaria Garcia. Bridging the Gap Between Machine Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations. In Physical Review Accelerators and Beams, 2024

Scan for repository!

