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§ Nonlinear integrable beam optics in rings

§ Computational and theoretical tools
§ single-particle dynamics – tracking, analytical methods
§ collective effects – space charge, matching, relaxation
§ numerical diagnostics – chaos, filamentation, losses

§ Optimization for halo suppression

§ Conclusions



• Nonlinear Integrable Beam Optics in Rings



The IOTA storage ring : an accelerator R&D test facility with a focus 
on strategies to mitigate space charge-induced beam halo.
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• Possible solutions: electron lenses and columns, nonlinear integrable lattices

• Integrable Optics Test Accelerator (IOTA)

- Novel accelerator physics:  strongly nonlinear design
- Experimental test bed for space charge mitigation
- Run first with electrons, then low-energy protons

S.Nagaitsev, IOTA Program 26 

Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes

Small amplitudes
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A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

nonlinear magnetic insert

Fermilab
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FIG. 1: Histogram plots of the 2D phase space projections initially (left) and after 500 passes (right) for the linear
lattice. Blue dots indicate particles outside of 2 RMS beam radius. The pre-halo indicated by the blue dots

uniformly fills the projections and accounts for 1% of the total beam current.

FIG. 2: Histogram plots initially (left) and after 500 passes (right) for the IEL. Note the hourglass shape of the
properly matched IEL beam.

ple set of Poincaré surfaces of section for five particles is
shown in figure 3.

By appearance this would seem to indicate that space
charge has broken the integrability of the trajectories,
but they remain bounded. The exact details of this plot
are di�cult to divine in real space, but in Fourier space it
is transparent. The tune diagram in figure 4 shows that
particles in the IEL, even with similar amplitudes for
their nonlinear oscillations, have di↵erent frequencies of
motion, and in many cases have relatively strong subhar-

monics. Therefore, if space charge drives a particle from
one amplitude to another in the IEL, its oscillations will
have a di↵erent tune. We observed similar e↵ects in the
chaotic bounded octupole lattice and nearly-integrable
FODO lattice cases, and will elaborate on this in future
publications.

The recent work in [11] has developed a new paradigm
for designing highly-nonlinear particle accelerator lattices
that simultaneously demonstrate strong frequency shift
with amplitude and integrable two-dimensional single-
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using conventional linear design using nonlinear integrable design

halo

• Nonlinearity     tune spread “washes out” instabilities, core-halo resonances
• Integrability     ensures orbits are regular and remain bounded (no chaos) 

S. Danilov, S. Nagaitsev, PRAB 13, 084002 (2010)
 S. Antipov et al, JINST 12, T03002 (2017)
1S. Webb et al, p. 2961, IPAC 2012

halo
Webb et al1



Integrability = the single-particle orbits are confined to level sets defined by invariants 
of motion       motion with stable frequencies (tunes)
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Liouville-Arnold Theorem

Suppose H is a time-independent Hamiltonian for an n degree-of-freedom system,
 and H = f1, f2, ..., fn are n smooth functions on the phase space M such that:

The motion is confined to a set                                                                                .

rf1, . . . ,rfn are linearly independent1)

{fi, fj} = 0 (i, j = 1, . . . , n) (the fj are in involution)2)

Mz = {p 2 M |fi(p) = zi, i = 1, . . . , n}
If Mz is compact and connected, then Mz is diffeomorphic to the n-torus.

original
variables

(the fj are independent)

action-angle
variables

smooth coordinate
transformation

linear
flow

=)

invariants

level sets

Examples:
  - stable linear motion
  - nonlinear pendulum
  - 2-body Keplerian motion

Similar definitions apply 
to symplectic maps.



Fermilab’s IOTA Ring:  Nonlinear Integrable Optics Lattice Configuration
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Two invariants of the transverse motion*.
H - single-particle Hamiltonian
I – second invariant

*S. Danilov and S. Nagaitsev, PRAB 13, 084002 (2010).
  S. Antipov et al, JINST 12, T03002 (2017)
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IOTA’s experimental program also includes:
• use of electron lenses and columns
• optical stochastic cooling
• single-electron quantum science

Equivalent to
integrable

motion in a
2D nonlinear 
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Figure 3. Layout of the Integrable Optics Test Accelerator (IOTA) ring.

the proton beam from the proton injector corresponds to the momentum of 70 MeV/c and requires
half the nominal bending field.

Focusing is provided by 39 quadrupole magnets. The correction system consists of 20
combined-function dipole (horizontal and vertical) and skew-quadrupole corrector magnets, 8
horizontal orbit correction coils incorporated in the main dipoles, 2 special vertical correctors in
the injection straight section, and 10 sextupoles for chromaticity correction. The lattice is mirror-
symmetrical with respect to the vertical center line, allowing for a cost-e�cient powering scheme
with 20 power supplies powering the main quadrupole magnets (7 250 A, 7 120 A, and 6 70 A
supplies). The main dipoles are powered in series with the injection Lambertson by a single power
supply. All of the corrector elements are powered by individual bipolar 2 A/15 V supplies reused
from the Tevatron Collider.

The vacuum chamber in the straight sections is made of stainless steel pipe with a 2-inch internal
diameter. In bending magnets, the vacuum chamber is Aluminium of rectangular cross-section with
dimensions of 50 ⇥ 50 mm. Vacuum at a level of 6 ⇥ 10�10 Torr or better is maintained with the
use of combination NEG and ion pumping at 35 locations around the ring and in the transfer line.
The IOTA ring shares a common vacuum with the FAST injector, where the vacuum specification
is 1.5⇥10�8 Torr, and thus the transfer line will employ three 150 L/s combination NEG/ion pumps
for di�erential pumping. The system is bakeable in situ up to 120 °C prior to use and each time the
vacuum system is opened for modifications or maintenance. The high quality of vacuum system
is necessary for proton beam operation and the vacuum of 6 ⇥ 10�10 Torr determines the beam
lifetime of 5 min for 2.5 MeV protons. The requirements for electron beam operation are much
more relaxed, and a level of 3 ⇥ 10�8 Torr is su�cient for a beam lifetime of 30 min of 150 MeV
electrons.

The injection system (located in the upper straight section in figure 3) consists of a Lambertson
magnet and an adjacent stripline kicker (figure 4). The horizontal 30°-bend Lambertron magnet

– 4 –

• βx = βy , D = 0 across the nonlinear drift space
• nπ phase advance from nonlinear drift space
       exit to nonlinear drift space entrance 

drift space for 
nonlinear insert

S.Nagaitsev, IOTA Program 26 

Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes

Small amplitudes
(0.91, 0.59)

Large amplitudes
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A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

impacted by space charge

Fermilab’s IOTA Ring:  Nonlinear Integrable Optics Lattice Configuration
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Integrable Optics at IOTA 
� Main goals for studies with a pencil electron beam:  
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Two invariants of the transverse motion*.
H - single-particle Hamiltonian
I – second invariant

One part of a large experimental program at IOTA.*S. Danilov and S. Nagaitsev, PRAB 13, 084002 (2010).
S. Antipov et al, JINST 12, T03002 (2017)
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R&D Areas:  Long-Time Beam Prediction at the Interface Between Nonlinear 
Dynamics and High Intensity
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Advanced Algorithm Development  (Goals:  improved speed and fidelity of modeling on long time scales.)

• Fast symplectic tracking in nonlinear applied fields/fringe fields (non-split Hamiltonians)
• Improved integration of realistic 3D Maxwellian RF and magnet models with tracking tools
• Structure-preserving space charge modeling to ensure phase space preservation
• Improved integration of space charge with s-based tracking (e.g., long, bunched beams, dipoles)
• Efficient space charge modeling at high resolution (adaptive mesh refinement, higher-order particle shapes)
• Addressing computational bottlenecks (eg., fast in-situ numerical phase space diagnostics to reduce I/O)

Mathematical and Theoretical Methods  (Goals:  validation and physics understanding for effective design.)

• Nonlinear methods (e.g. Lie methods, near-integrable dynamical systems) – dynamic aperture
• Self-consistent beam equilibria and stability with nonlinear focusing – matching
• Understanding numerical artifacts (particle noise) associated with long-term simulation
• Theoretical models of space-charge-induced beam halo formation with nonlinear focusing
• Theoretical models of collective instabilities and nonlinear decoherence (Landau damping)



IMPACT:  Multi-Physics High-Intensity and High Brightness Beam Dynamics 
Code Suite 

J. Qiang et al., Phys. Rev. Accel. Beams 20, 054402 (2017).

Start-to-end simulation of the Linac Coherent Light Source Key features include:
time-dependent and position dependent PICs
serial and massive parallelization
detailed 3D RF accelerating and focusing model
standard elements:  dipole, solenoid, multipole, etc.
multiple charge states, multiple bunches
3D space charge effects
structure and resistive wall wakefields
coherent synchrotron radiation (CSR)
incoherent synchrotron radiation (ISR)
photo-electron emission
machine errors and steering

The IMPACT code suite is used by > 40 
    institutes worldwide

successfully applied to both electron & proton 
     machines:

CERN PS2 ring, SNS linac, ...
LCLS-II linac  

microbunching simulated using 2B macroparticles https://blast.lbl.gov/



• Single-particle dynamics



New algorithms and numerical capabilities added to IMPACT-Z to address 
challenges of modeling nonlinear integrable dynamics.
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Implementation of the nonlinear magnetic insert using a symplectic integrator

Re(z)

Im(z)
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Field lines of the nonlinear insert in the
 transverse plane

• Concise, complex representation of the 
nonlinear integrable potential.

• Uses a 2nd order symplectic integrator to 
perform s-dependent tracking.

• Avoids instability of previous integrators due to 
vanishing denominators in equations of motion.

• Additional tools for soft-edge fringe fields.

Longitudinal variation of quadrupole gradient
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C. Mitchell, in Proceedings NOCE 2017, and IPAC 2018, and arXiv:1908.00036

• Python interface and postprocessing control using Jupyter.
• Implementation of quadrupole and dipole nonlinear fringe field 
          models relevant for modeling proton rings at low-moderate energy.
•     Additional Poisson solvers and diagnostics capabilities (discussed later).

Nonlinear quadrupole fringe field effects

Other new capabilities implemented in IMPACT-Z
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Geometric methods in nonlinear dynamics provide a foundation for the analysis 
of single-particle optics in integrable accelerator lattices.
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• Need: To understand the global single-particle dynamics accessible in accelerator designs 
(such as IOTA) based on nonlinear integrable optics.

• Problem:  Standard approaches to nonlinear dynamics in the accelerator community are 
perturbative, neglect fully 4D or 6D coupling, or require a clever choice of coordinates.

• Solution:  Geometric methods from the theory of integrable Hamiltonian systems may be 
applied to locate fixed points, periodic orbits, dynamical bifurcations, and determine 
frequencies of motion (tunes), using knowledge only of the invariants of motion.

Bifurcations of dynamical fixed points
in IOTA vs. magnetic insert strength
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Example:  Bifurcation diagram for nominal single-particle dynamics in IOTA
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Bifurcation diagram showing critical values of (H,I)
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Invariants of single-particle motion

Distinct regions of the diagram correspond to dynamics with 
qualitatively distinct single-particle orbits.
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Bifurcation diagram showing critical values of (H,I)
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Analytical method for extracting nonlinear tunes of integrable symplectic maps 
developed and applied to the IOTA ring
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• Need: To understand analytically the frequency content of orbits
      in accelerator lattices based on nonlinear integrable optics, and 
      to use this information in accelerator design (to control tune spread).

• Problem:  Traditional method for analysis of integrable systems 
      relies on action-angle coordinates, which are difficult to obtain
      in explicit form, and which break down near critical phase space  
      structures (eg, separatrices).

• Solution:  A semi-analytical method to extract dynamical tunes of an 
integrable symplectic map from its invariants of motion, without the 

      need for tracking, using path integrals in the invariant level sets.
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Extracting frequencies
of the 4D McMillan mapping

from its 2 invariants of motion

Extracting tunes for orbits in IOTA for comparison with tracking using NAFF

Reveals the link between frequencies and geometry of level sets.
Can aid in design of future nonlinear integrable lattices.

vector of tunes



• Collective effects



Implementation of a gridless symplectic space charge solver to enable 
long-term Hamiltonian tracking of high intensity beams

19

Avoids the destruction of integrability due to non-symplectic artifacts.

19

Evolution of H for a 
cylindrical proton 
beam expanding to 
twice its initial radius 

• Need: Avoid numerical artifacts due to space charge that break the geometric 
Hamiltonian structure, necessary to ensure reliability on long time scales.

• Problem: Most PIC methods result in a particle push that is not symplectic
      on the phase space due, e.g. due to interpolation and finite differencing.
     
• Solution: A 2D gridless symplectic space charge solver (J. Qiang, 2017) 
      was implemented in IMPACT-Z to enable robust long-term tracking with
      space charge.  Each step is a map that is symplectic on the collective
      N-body phase space of the simulated particles.

J. Qiang, Phys. Rev. ST Accel. 
Beams 20, 014203 (2017)
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New PDE solver enables the study of intense beam equilibria in strongly 
nonlinear lattices and relaxation to equilibrium

20

Reveals the expected structure of high intensity stable beams in IOTA.

C. Mitchell, R. Ryne, K. Hwang
Phys. Rev. E 100, 053308 (2020) 
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Numerical Example:  Tracking of an Equilibrium Beam in 
an IOTA Constant Focusing Channel 

14 

Beam energy:  2.5 MeV protons 
Thermal beam with <H> = 0.125  (norm. emittances εx,n = 0.4 µm, εy,n = 0.8 µm) 
Constant focusing nonlinear insert:  τ = -0.4, c = 0.01 m1/2, L = 1.8 m 
Twiss beta:  1.27 m    (Based on the IOTA ring circumference and tune.) 

Physical parameters: 

Numerical parameters: 1M particles, with 1K numerical steps per 1.8 m 
symplectic spectral space charge solver, 128x128 modes 
rectangular domain w/ a = b = 3.39 cm 

120 mA current 60 mA current Zero current 

G(h) / exp(�h/H0)

Density 
contours 
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G(h) / exp(�h/H0)

Density 
contours 

Contours illustrating
equilibrium beam
density in the x-y
plane for increasing
value of beam current

• Need: To understand 4D beam Vlasov equilibria for intense beams in 
constant focusing channels with strongly nonlinear transverse focusing.

• Problem: Existing theories of beam equilibria were developed assuming
      linear external focusing.  Few analytical models in the nonlinear case.
     
• Solution: A spectral Galerkin solver was developed to solve a nonlinear 

PDE for the equilibrium space charge potential.  The new solver was 
applied to study intense beam equilibria in a nonlinear constant-focusing 
model of IOTA.



New PDE solver enables the study of intense beam equilibria in strongly 
nonlinear lattices and relaxation to equilibrium
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Reveals the expected structure of high intensity stable beams in IOTA.

C. Mitchell, R. Ryne, K. Hwang
Phys. Rev. E 100, 053308 (2020) 
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• Need: To understand 4D beam Vlasov equilibria for intense beams in 
constant focusing channels with strongly nonlinear transverse focusing.

• Problem: Existing theories of beam equilibria were developed assuming
      linear external focusing.  Few analytical models in the nonlinear case.
     
• Solution: A spectral Galerkin solver was developed to solve a nonlinear 

PDE for the equilibrium space charge potential.  The new solver was 
applied to study intense beam equilibria in a nonlinear constant-focusing 
model of IOTA.

Guidance for matching injected
beams using phase space painting.



General procedure for the generation of an initial beam distribution matched to the 
periodic nonlinear lattice

22
[1] S. Webb et al, p. 3099, IPAC 2013. 

physical phase space 
variables (x, px, y, py)

Courant-Snyder
transformation

normalized phase space
variables (xN , pxN , yN , pyN)

- Hamiltonian is s-dependent
- distribution varies periodically in s
- parameter ε0 plays the role of emittance 

f ⇠ �(H � ✏0)
“nonlinear KV distribution” [1]

- Hamiltonian is s-independent
- distribution function is stationary

“nonlinear waterbag distribution”

f ⇠ ⇥(✏0 �H)

Nonlinear KV
ε0 = 8 mm-mrad

Nonlinear waterbag
ε0 = 8 mm-mrad

boundary = equipotential curve
of the nonlinear potential
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Beam is matched to the nonlinear lattice at the NLI midpoint.

Ramping 0-8 mA over 100 turns.

Distribution at nominal 8 mA 
current is visibly well-matched.

High-intensity matched beam
exhibits features similar to 
the equilibrium in a CF channel.

Vertical
profile

With space charge, adiabatic
ramping of beam current



• Numerical diagnostics



Efficient numerical algorithms reveal the boundary between chaos and 
integrability in nonlinear integrable lattices with space charge

24

Reveals phase space regions for IOTA that are sensitive to chaos and to be avoided.

K. Hwang, C. Mitchell, R. Ryne,
Phys. Rev. Accel. Beams 23, 
0846021 (2020)

Stable aperture for 
halo particles 
surrounding
a proton beam
in IOTA

x

y

regular
chaotic

x

y

Frequency Map Analysis Forward-Backward Integration

• Need: Accurate tools to distinguish between regular and chaotic motion that do not 
require long computing times.

• Problem: Standard chaos indicators (NAFF) require long time series, and space charge 
introduces spurious frequency drift and numerical noise.

• Solution:  Use symplectic and time-reversible tracking algorithms and an efficient 
chaos indicator using forward-backward integration.  Self-consistent tracking and 
idealized models of space charge reveal similar structure.

be
am

be
am

Nonlinear resonance lines in IOTA 
model with space charge tune shift

appearing in the short term FMA plots are likely false
indications of chaos. See Appendix B or Ref. [34] for
further details. The Henon-Heiles potential example pre-
sented in Appendix A further supports this argument. We
believe that this occurs because the accuracy of FMA is
very sensitive to the precision of the frequency measure-
ment that can be obtained using a time series of finite
length. In the limit of continuous-time data, it can be shown
that the numerical error of the frequency vector obtained
using the NAFF algorithm scales as an inverse power of
the time length of the data, i.e., ∝ T−n for n > 0 [13].
Practically, for discrete-time data, the convergence can be
worse. The sensitivity of FMA to the time length is
especially high near resonances, as reported in [35]. On
the other hand, the REM results in Fig. 16 show that the
structure of the dynamic aperture plots is already converg-
ing with a time length as short as T ¼ 256, verifying the
relatively rapid convergence of REM.
Finally, we analyze in more detail the dynamic aperture

of the IOTA toy-model at the nominal parameters used to
produce Fig. 14. We emphasize that these figures illustrate
the breakdown of integrability in the presence of a
perturbation. The perturbation is given by an error in tune
advance δμ over the arc section, which is motivated by the
space-charge induced tune depression in the IOTA ring.
When δμ ¼ 0, the system is perfectly integrable every-
where except at the singular points ðxn; ynÞ ¼ ð$1; 0Þ
inherent to the potential in Eq. (8). This may be seen
clearly in the uppermost figure in Fig. 14. However,
numerical errors due to the finite integration step size
and finite precision can break some of the invariant tori.
When the invariant tori are broken by such small errors, it is

likely that these tori will also be broken when physical
perturbations including the tune error over the arc δμ are
considered. Among the broken tori are those containing
initial conditions that lie along the red curve shown in
Fig. 14, which corresponds to the locus of points I ¼ 2H in
the xn − yn plane (with px;n ¼ py;n ¼ 0, yn ≠ 0), where H
are I are given in Eq. (8) and Eq. (10). It can be shown that
the invariant level sets corresponding to these initial
conditions contain unstable critical periodic orbits, and
lie on a separatrix-like structure separating distinct dynami-
cal regions in the phase space [31]. Note that the I ¼ 2H
curves also form the innermost boundary of the dynamic
aperture at the various values of δμ in Fig. 14.

V. SELF-CONSISTENT SPACE-CHARGE
SIMULATION OF REALISTIC IOTA LATTICE

In this section, we apply FMA and REM to simulated
particle orbits obtained in the presence of space charge,
using a realistic IOTA lattice with a 2D symplectic space-
charge solver [36] implemented in IMPACT-Z [37]. We
choose a 2D solver: (1) in order to model the nominal case
of a long beam that nearly fills the ring, and (2) in order to
isolate transverse space-charge effects from off-momentum
chromatic effects, which are enhanced in the presence of a
longitudinal space-charge force. The nonlinear integrability
is preserved only for on-momentum particles unless a
special chromatic correction is applied [38]. In this study,
we choose a small beam current I ¼ 0.41 mA targeting a
test proton operation of IOTA before ramping up to high
current. The nonlinear effects over the arc section including
geometric nonlinearity of dipoles, nonlinear kinetics, and
nonlinear fringe fields (but linear fringe field effects are
considered) are ignored so that weak space-charge con-
tribution can be solely explored. Lattice parameters were
adjusted accordingly such that δμx ¼ δμy ¼ 0 for particles
near the beam center [39]. In order words, the phases-
advance of particles of zero amplitude limit is integer
multiple of π. The nominal settings for the nonlinear insert
are used: ν ¼ 0.3 and τ ¼ −0.4.
For the initial beam, we use a waterbag distribution,

defined by the distribution function:

ρðHÞ ∝ ΘðH −H0Þ ð15Þ

where ΘðHÞ ¼ 1 for H ≤ 0 and ΘðHÞ ¼ 0 for H > 0. One
million macroparticles are sampled from Eq. (15) with
H0 ¼ 0.06 (which corresponds to the nominal beam size)
to represent the beam. In addition to the particles of the
beam, we also prepared test particles of zero charge over
the disk x2n þ y2n < 1 in the xn − yn plane, with zero normal
momentum, as we did in Sec. IV, to obtain a plot of
dynamic aperture for test particles moving in the combined
space charge and external fields.
Figure 18 shows the resulting dynamic aperture plots

obtained using FMA and REM. The initial boundary of the

FIG. 17. Resonant contour lines of νy=νx overlaid on top of an
FMA dynamic aperture plot for the IOTA toy-model at ν ¼ 0.3,
δμ ¼ 0.01 and T ¼ 128. The color-bar overhead indicates
−ΔFMA, and the color-bar on the right indicates νy=νx.

KILEAN HWANG, CHAD MITCHELL, and ROBERT RYNE PHYS. REV. ACCEL. BEAMS 23, 084601 (2020)
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Numerical Tools in IMPACT-Z for Improved Characterization and Visualization of 
Proton Beam Losses in IOTA

25

• Need: To characterize problematic locations for losses to aid in 
      design of diagnostics for early-stage proton operation, and to aid in
      selecting location/design of collimation scheme from the RFQ.

• Problem:  Previous tracking tools available in IMPACT-Z allowed
      only circular/rectangular aperture, specified by element; only number 
      of lost particles per turn was stored, without phase space information.

• Solution:  Symplectic space charge tracking algorithm was updated
      to allow variable particle number; elliptical and fully s-dependent 
      aperture capability was implemented; phase space information for
      all lost particles is now stored and visualized via Python interface.

• Outcome: Tools for visualizing proton losses were applied to
      compare methods for truncating the beam distribution in IOTA at
      the nominal emittance out of the RFQ, studying importance of
      mismatch, magnetic insert strength, and distribution type.

Characterization and Visualization of Proton Losses in IOTA
Physical aperture in the IOTA ring 

Visualization of beam loss for an uncollimated beam with mismatch

from Kilean Hwang



Numerical diagnostics using statistical distance (distribution “proximity”) 
implemented to characterize a beam’s relaxation to a stationary state

26

• Need: To numerically characterize “proximity” and relaxation processes for beams in
      the presence of high intensity or strong nonlinear focusing.

• Problem:  Diagnostics using low-order (eg, 2nd) beam moments are insufficient to 
characterize “proximity” of distributions in the presence of strong nonlinear effects.

• Solution:  Implement two-sample measures of statistical distance such as Maximum 
Mean Discrepancy, effectively embedding each distribution into a linear Hilbert space.

Filamentation of a beam kicked off-axis in a nonlinear focusing system

Distance to equilibirium as characterized
by Maximum Mean Discrepancy

 
 

Toy Model:  Beam Evolution in Original Coordinates 
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C. Mitchell et al,
Phys. Rev. E 106, 
065302 (2022)

Provides a quantitative metric for numerical studies of relaxation.

Computed with complexity O(n)
for translation-invariant kernels
(e.g., Gaussian)

n = number of simulated particles



• Optimization for halo suppression
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c = 0.014 m1/2
• Halo formation occurs on a time 

scale of 200-300 turns (at 5-8 mA).

• Due to chaos induced when 
particles cross a separatrix-like 
structure in the phase space.

• Increasing c-parameter of the
      nonlinear magnet moves the
      problematic separatrix farther
      from the beam.

Impact of magnetic c-parameter on halo

High-resolution modeling studies proton beam filamentation, halo, and 
losses in the IOTA ring and how these can be mitigated.

Design with increased c-parameter 
is being explored with the vendor.

Shows existing integrable optics 
designs can be improved!

c = 0.014 m1/2

x/�x

c = 0.01 m1/2

x/�x

halo

Intense 8 mA proton beam in IOTA (vertical phase space)

50 turns

1 turn 10 turns

300 turns

nonlinear
linearized

suppressed

IOTA shows less halo formation than a linear design in this
regime, but results are sensitive to parameters and to the
choice of linear design (mixed).



Conclusions

29

• Accelerator designs based on nonlinear integrable optics have the potential to provide strong damping of 
instabilities (decoherence), but require a new toolkit of techniques for analysis and modeling.

• Analytical and semi-analytical methods for dynamical systems play an important role.

• For the case of the IOTA storage ring, theory and modeling reveal an unexpectedly rich single-particle 
dynamics, with several distinct operating regimes. Modeling reveals a mixture of regular and chaotic orbits at 
high intensity.  Beam halo mechanisms need to be better understood, and room remains for optimization.

• Studies motivated the implementation of new tools in IMPACT-Z, including improved tracking and fringe field 
models (e.g., for dipoles), nonlinear magnet element types, new space charge models, new beam diagnostics, 
and a workflow for optimization and postprocessing using Jupyter.

• Exploring the space of possible integrable focusing lattice schemes could have a major impact on beam 
performance in future high intensity machines.  



• Backup material



Integrability holds for (single-particle) motion of on-energy particles in the 
transverse degrees of freedom

31

• Dynamics in the arc external to 
the nonlinear magnetic insert:

D&N give in [1] a realizable potential U 
such that HN admits a second invariant IN : 

{HN , IN} = 0

Assumed linear with a map RN given by:

Thus, the phase advance must be nπ.

RN = ±I (4x4 identity)

HN, IN are invariant under the one-turn map.

.

• Dynamics inside the nonlinear magnetic insert:

Courant-Snyder transformation, scaling
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Figure 3. Layout of the Integrable Optics Test Accelerator (IOTA) ring.

the proton beam from the proton injector corresponds to the momentum of 70 MeV/c and requires
half the nominal bending field.

Focusing is provided by 39 quadrupole magnets. The correction system consists of 20
combined-function dipole (horizontal and vertical) and skew-quadrupole corrector magnets, 8
horizontal orbit correction coils incorporated in the main dipoles, 2 special vertical correctors in
the injection straight section, and 10 sextupoles for chromaticity correction. The lattice is mirror-
symmetrical with respect to the vertical center line, allowing for a cost-e�cient powering scheme
with 20 power supplies powering the main quadrupole magnets (7 250 A, 7 120 A, and 6 70 A
supplies). The main dipoles are powered in series with the injection Lambertson by a single power
supply. All of the corrector elements are powered by individual bipolar 2 A/15 V supplies reused
from the Tevatron Collider.

The vacuum chamber in the straight sections is made of stainless steel pipe with a 2-inch internal
diameter. In bending magnets, the vacuum chamber is Aluminium of rectangular cross-section with
dimensions of 50 ⇥ 50 mm. Vacuum at a level of 6 ⇥ 10�10 Torr or better is maintained with the
use of combination NEG and ion pumping at 35 locations around the ring and in the transfer line.
The IOTA ring shares a common vacuum with the FAST injector, where the vacuum specification
is 1.5⇥10�8 Torr, and thus the transfer line will employ three 150 L/s combination NEG/ion pumps
for di�erential pumping. The system is bakeable in situ up to 120 °C prior to use and each time the
vacuum system is opened for modifications or maintenance. The high quality of vacuum system
is necessary for proton beam operation and the vacuum of 6 ⇥ 10�10 Torr determines the beam
lifetime of 5 min for 2.5 MeV protons. The requirements for electron beam operation are much
more relaxed, and a level of 3 ⇥ 10�8 Torr is su�cient for a beam lifetime of 30 min of 150 MeV
electrons.

The injection system (located in the upper straight section in figure 3) consists of a Lambertson
magnet and an adjacent stripline kicker (figure 4). The horizontal 30°-bend Lambertron magnet

– 4 –

• βx = βy , D = 0 across the nonlinear drift space
• nπ phase advance from nonlinear drift space
       exit to nonlinear drift space entrance 

drift space for 
nonlinear insert

S.Nagaitsev, IOTA Program 26 

Integrable Optics at IOTA 
• Main goals for studies with a pencil electron beam:  

� Demonstrate a large tune spread of ~1 (with 4 lenses) without degradation of 
dynamic aperture ( minimum 0.25 ) 

� Quantify effects of a non-ideal lens and develop a practical lens (m- or e-lens) 

FNAL Concept: 2-m long 
nonlinear magnet 

SBIR Phase I and II:  
Radiabeam Technologies 

FMA, fractional tunes

Small amplitudes
(0.91, 0.59)

Large amplitudes

0.5 1.0

0.5

1.0

νx

νy

A single 2-m long nonlinear lens  
creates a tune spread of ~0.25 NA-PAC13: F. Shea et al., 

“Measurement of Nonlinear 
Insert Magnets” 

impacted by space charge

1V. Danilov and S. Nagaitsev, Phys Rev Accel Beams 13, 084002 (2010) 



Magnetic Vector Potential and Magnetic Field within the IOTA Nonlinear 
Magnetic Insert

32

The ideal 2D magnetic field within the nonlinear insert at location s is given 
by                                         , where the potentials are given in terms of 
dimensionless quantities:
~B = r⇥ ~A = �r 

F =
As + i 

B⇢
, z =

x+ iy

c
p
�(s)

, t̃ =
⌧c2

�(s)

using the complex function:

F (z) =

✓
t̃zp
1� z2

◆
arcsin(z) .

Field lines of the nonlinear insert in the
 transverse plane (blue)

 6 

 
Fig. 2:  (Left) Magnetic field lines for the nonlinear elliptic magnet based on [9].  (Right) Equipotentials 

for the nonlinear elliptic magnet based on [9].  Figures are taken from [32]. 

 
 

Fig. 3:  Quadrupole gradient strength as a function of longitudinal coordinate for the nonlinear elliptic 
magnet based on [9], shown for a magnet with 20 distinct segments [32]. 

 
 Once reasonable agreement with other codes has been attained at moderate resolution, we will 
perform a massively parallel simulation of the IOTA lattice at high resolution, with the goal of predicting 
beam loss rates with a relative accuracy of 10-6 or better.  A large number of simulation particles will be 
used (in the range 100M-1B) in order to achieve the statistics required to accurately resolve losses at this 
level, which is required ensure that power deposition to the chamber walls remains below ~1 W/m.  To 
achieve this, simulations will be run using several-10K processors on the newest supercomputer, Cori, at 
the National Energy Research Scientific Computing Center (NERSC).  These simulations will serve to 
validate simulations of beam loss performed using other codes, to resolve beam-loss effects that require 
extraordinarily high fidelity, and to set the stage for the remaining tasks to follow. 
 
2.2.2   Task 2:  Investigate the effects of numerical noise on long-term tracking with space charge. 
 
 Numerical artifacts are an unavoidable feature of self-consistent, long-term tracking of beams 
with space charge, and are of critical interest to the intense beam community.  For example, because the 
number of simulation particles used to sample the beam is typically much smaller than the number of 
physical particles, discrete-particle noise produces a collisional effect similar to intrabeam scattering, 
driving unphysical emittance growth and tune spread in the simulated beam.  (See Figure 4.)  These 
effects of numerical noise are under active investigation by the accelerator physics community, but many 
questions remain unresolved [27-29]. In addition, existing treatments rely on the linearity of the magnetic 
lattice, and new techniques will be needed to understand these effects in the presence of highly nonlinear 
lattices. 
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Singular points in the
transverse plane:

τ – dimensionless insert strength
c – transverse scale parameter [m1/2]
Bρ – magnetic rigidity [T-m]
β – betatron amplitude [m]The transverse focusing fields vary longitudinally with s.

Longitudinal variation of the quadrupole gradient

Magnetic field lines in the transverse plane

L – length of the magnetic insert [m]
2𝜋𝜇! – phase advance across the magnetic  insert
𝛽∗ - beta function at the longitudinal midpoint



Critical and resonance structures in the single-particle phase space (zero current 
integrable motion)

33

appearing in the short term FMA plots are likely false
indications of chaos. See Appendix B or Ref. [34] for
further details. The Henon-Heiles potential example pre-
sented in Appendix A further supports this argument. We
believe that this occurs because the accuracy of FMA is
very sensitive to the precision of the frequency measure-
ment that can be obtained using a time series of finite
length. In the limit of continuous-time data, it can be shown
that the numerical error of the frequency vector obtained
using the NAFF algorithm scales as an inverse power of
the time length of the data, i.e., ∝ T−n for n > 0 [13].
Practically, for discrete-time data, the convergence can be
worse. The sensitivity of FMA to the time length is
especially high near resonances, as reported in [35]. On
the other hand, the REM results in Fig. 16 show that the
structure of the dynamic aperture plots is already converg-
ing with a time length as short as T ¼ 256, verifying the
relatively rapid convergence of REM.
Finally, we analyze in more detail the dynamic aperture

of the IOTA toy-model at the nominal parameters used to
produce Fig. 14. We emphasize that these figures illustrate
the breakdown of integrability in the presence of a
perturbation. The perturbation is given by an error in tune
advance δμ over the arc section, which is motivated by the
space-charge induced tune depression in the IOTA ring.
When δμ ¼ 0, the system is perfectly integrable every-
where except at the singular points ðxn; ynÞ ¼ ð$1; 0Þ
inherent to the potential in Eq. (8). This may be seen
clearly in the uppermost figure in Fig. 14. However,
numerical errors due to the finite integration step size
and finite precision can break some of the invariant tori.
When the invariant tori are broken by such small errors, it is

likely that these tori will also be broken when physical
perturbations including the tune error over the arc δμ are
considered. Among the broken tori are those containing
initial conditions that lie along the red curve shown in
Fig. 14, which corresponds to the locus of points I ¼ 2H in
the xn − yn plane (with px;n ¼ py;n ¼ 0, yn ≠ 0), where H
are I are given in Eq. (8) and Eq. (10). It can be shown that
the invariant level sets corresponding to these initial
conditions contain unstable critical periodic orbits, and
lie on a separatrix-like structure separating distinct dynami-
cal regions in the phase space [31]. Note that the I ¼ 2H
curves also form the innermost boundary of the dynamic
aperture at the various values of δμ in Fig. 14.

V. SELF-CONSISTENT SPACE-CHARGE
SIMULATION OF REALISTIC IOTA LATTICE

In this section, we apply FMA and REM to simulated
particle orbits obtained in the presence of space charge,
using a realistic IOTA lattice with a 2D symplectic space-
charge solver [36] implemented in IMPACT-Z [37]. We
choose a 2D solver: (1) in order to model the nominal case
of a long beam that nearly fills the ring, and (2) in order to
isolate transverse space-charge effects from off-momentum
chromatic effects, which are enhanced in the presence of a
longitudinal space-charge force. The nonlinear integrability
is preserved only for on-momentum particles unless a
special chromatic correction is applied [38]. In this study,
we choose a small beam current I ¼ 0.41 mA targeting a
test proton operation of IOTA before ramping up to high
current. The nonlinear effects over the arc section including
geometric nonlinearity of dipoles, nonlinear kinetics, and
nonlinear fringe fields (but linear fringe field effects are
considered) are ignored so that weak space-charge con-
tribution can be solely explored. Lattice parameters were
adjusted accordingly such that δμx ¼ δμy ¼ 0 for particles
near the beam center [39]. In order words, the phases-
advance of particles of zero amplitude limit is integer
multiple of π. The nominal settings for the nonlinear insert
are used: ν ¼ 0.3 and τ ¼ −0.4.
For the initial beam, we use a waterbag distribution,

defined by the distribution function:

ρðHÞ ∝ ΘðH −H0Þ ð15Þ

where ΘðHÞ ¼ 1 for H ≤ 0 and ΘðHÞ ¼ 0 for H > 0. One
million macroparticles are sampled from Eq. (15) with
H0 ¼ 0.06 (which corresponds to the nominal beam size)
to represent the beam. In addition to the particles of the
beam, we also prepared test particles of zero charge over
the disk x2n þ y2n < 1 in the xn − yn plane, with zero normal
momentum, as we did in Sec. IV, to obtain a plot of
dynamic aperture for test particles moving in the combined
space charge and external fields.
Figure 18 shows the resulting dynamic aperture plots

obtained using FMA and REM. The initial boundary of the

FIG. 17. Resonant contour lines of νy=νx overlaid on top of an
FMA dynamic aperture plot for the IOTA toy-model at ν ¼ 0.3,
δμ ¼ 0.01 and T ¼ 128. The color-bar overhead indicates
−ΔFMA, and the color-bar on the right indicates νy=νx.
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• Red curve:  primary separatrix-like structure
       Black curve:  I.C.s for unstable periodic orbits

• Separate regions of distinct orbit behavior

• A matched beam at 0 mA with the nominal 
emittance lies within the primary separatrix

Critical structures:

Resonance structures:
• Resonant contour lines                are shown

• High density of resonances outside the
       primary separatrix

• Color:  measure of chaos when phase 
advance is perturbed (blue = regular)

⌫y/⌫x

When the phase advance is depressed, chaos develops first in the region outside the primary separatrix. 
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Critical and resonance structures in the single-particle phase space (zero current 
integrable motion)
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sented in Appendix A further supports this argument. We
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In this section, we apply FMA and REM to simulated
particle orbits obtained in the presence of space charge,
using a realistic IOTA lattice with a 2D symplectic space-
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choose a 2D solver: (1) in order to model the nominal case
of a long beam that nearly fills the ring, and (2) in order to
isolate transverse space-charge effects from off-momentum
chromatic effects, which are enhanced in the presence of a
longitudinal space-charge force. The nonlinear integrability
is preserved only for on-momentum particles unless a
special chromatic correction is applied [38]. In this study,
we choose a small beam current I ¼ 0.41 mA targeting a
test proton operation of IOTA before ramping up to high
current. The nonlinear effects over the arc section including
geometric nonlinearity of dipoles, nonlinear kinetics, and
nonlinear fringe fields (but linear fringe field effects are
considered) are ignored so that weak space-charge con-
tribution can be solely explored. Lattice parameters were
adjusted accordingly such that δμx ¼ δμy ¼ 0 for particles
near the beam center [39]. In order words, the phases-
advance of particles of zero amplitude limit is integer
multiple of π. The nominal settings for the nonlinear insert
are used: ν ¼ 0.3 and τ ¼ −0.4.
For the initial beam, we use a waterbag distribution,

defined by the distribution function:

ρðHÞ ∝ ΘðH −H0Þ ð15Þ

where ΘðHÞ ¼ 1 for H ≤ 0 and ΘðHÞ ¼ 0 for H > 0. One
million macroparticles are sampled from Eq. (15) with
H0 ¼ 0.06 (which corresponds to the nominal beam size)
to represent the beam. In addition to the particles of the
beam, we also prepared test particles of zero charge over
the disk x2n þ y2n < 1 in the xn − yn plane, with zero normal
momentum, as we did in Sec. IV, to obtain a plot of
dynamic aperture for test particles moving in the combined
space charge and external fields.
Figure 18 shows the resulting dynamic aperture plots

obtained using FMA and REM. The initial boundary of the

FIG. 17. Resonant contour lines of νy=νx overlaid on top of an
FMA dynamic aperture plot for the IOTA toy-model at ν ¼ 0.3,
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Surface Methods Provide a Robust Method for Tracking in the IOTA Nonlinear 
Magnetic Insert with Realistic 3D Fringe Fields 

35
C. Mitchell, Proc IPAC2018, Vancouver, THPAK036 (2018).
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• Need: Accurate symplectic tracking algorithm for modeling 
      the IOTA nonlinear magnetic insert with realistic fringe fields.

• Problem: The standard idealized model of the IOTA
      insert is non-Maxwellian, and neglects fringe field
      effects.  3D magnetic field data inherently noisy.

• Solution: Use surface methods to extract a smooth
      vector potential from 3D magnetic field data. 

• Outcome: Tracking with quadrupole and octupole fringe
      field corrections shows evidence of perturbed invariants,
      with little evidence of enhanced losses (10K turns).

 
 

Example:  quadrupole generalized gradient C2s computed from 
RadiaBeam 3D magnetic field using surface methods 
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Figure 15.2.1: A circular cylinder of radius R, centered on the z-axis, fitting within the bore
of a beam-line element, in this case a wiggler, and extending beyond the fringe-field regions
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Effect of the Increasing the c Value on the Matched
Beam Distribution in Invariant Space

36

• Increasing the c value leads the beam footprint to shrink in invariant space.
• The primary separatrix begins at (H,I)=(0.1,0.2) and extends along the ray I = 2H
• For sufficiently large c, the beam can be confined away from the primary separatrix.
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Understanding Proton Beam Dynamics at High Space Charge Intensity:  An Example 
of Code Benchmarking (IMPACT-Z & MaryLie/IMPACT)
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Goal:  Study relaxation of a beam in IOTA to near-equilibrium at high 
intensity, to compare with halo formation in a standard linear lattice.

• Physical IOTA lattice, 2.5 MeV proton beam with nominal emittance and 
energy spread. 

• 8 mA beam current (ΔQy ≈-0.6, ΔQx≈-0.9) – near maximum for expected 
IOTA operation.

Comparing beam size over turn 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0  5  10  15  20  25  30  35

v
e

rt
ic

a
l 
rm

s
 b

e
a

m
 s

iz
e

 (
m

m
)

distance (m)

IMPACT-Z
ML/I

Impact-Z ML/I
Reasonable agreement between two codes using 
different space charge algorithms (spectral, PIC).

Numerical convergence tests:  # modes/grid points, 
# particles, location of Poisson boundary, # sc kicks.

Comparing beam after 10 turns



Frequency map analysis of orbits in the total potential (space charge + focusing) for  a 
stationary beam in a nonlinear constant focusing channel.
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• Extreme current (space charge tune shift >1 near the origin), shown for illustration purposes only.
• 8K distinct initial conditions (x,0,y,0) in a disk.  
• Orbits are tracked in the sum of the external potential and the equilibrium space charge potential (using 

15x15 modes) for 2048 x 1.8 m distance through the nonlinear constant focusing section.  
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the NL potential at:
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