

SciBmad: A full-featured ecosystem for modern,
differentiable accelerator physics simulations
Matt Signorelli, David Sagan

14th International Computational Accelerator Physics Conference
Germany, October 2-5, 2024

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

Accelerator Software Wish-List
❑Modularity!!

• Maximal code re-use, minimal reinventing the wheel
• Plug-and-play different optimizers, symplectic integrators, tracking methods, etc.

with ease

❑ Runs optimally on all architectures, with CPU & GPU parallelization

❑ Easy to use and integrate with other programs/tools

❑ Fully differentiable using automatic differentiation
• Fast, accurate calculation of gradients for optimizations and machine learning

using forward and backward differentiation

❑ Full featured accelerator software toolkit
• Linear and nonlinear tracking, nonlinear parametric normal forms including spin,

Bmad’s advanced lattice design tools (e.g. superposition, multipass), etc

2

Can we have all of this? Enter: SciBmad

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

SciBmad: What it is (and isn’t)
• SciBmad (formerly called Bmad-Julia) is NOT

× A rewrite of the current Bmad in a different programming language. No Fortran code in SciBmad
× An interface to the current Bmad. Lattice translation between the two will exist though!
× The end of the current Bmad. Maintenance development of the current Bmad will continue

• SciBmad is
✓ Inspired by the experience (both good and bad) with developing the current Bmad
✓ A new software ecosystem for modern, differentiable accelerator physics simulations
✓ Written fully in the programming language

• By leveraging the programming language, SciBmad will achieve all points on the
wish-list!

3

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

• Julia is a high-level, HPC language that
“walks like Python, runs like C”
• As simple as Python, but as fast as C

• Adopts multiple dispatch and just-in-
time (JIT) compilation as central
paradigms
• Where types are inferable at compile-time,

it will be compiled (using LLVM toolkit), else
dynamically-dispatched with runtime type

• Features a powerful type system for
highly-polymorphic code

? What’s that?

4

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

• Universal polymorphism in Julia is easy and fast! Consider the function:

• Generally
 pass:

The Power of Multiple Dispatch and JIT

5

function track_drift(z0, L)
zf = similar(z0)

zf[1] = z0[1]+z0[2]*L/(1.0+z0[6])
zf[2] = z0[2]
zf[3] = z0[3]+z0[4]*L/(1.0+z0[6])
zf[4] = z0[4]
zf[5] = z0[5]-L*((z0[2]^2)+(z0[4]^2))/(1.0+z0[6])^2/2.0
zf[6] = z0[6]
return zf

end

z0 = Vector{Float64}(...)
track_drift(z0, L)

• However, say we’d instead like to track a
Taylor map of Truncated Power Series (TPS)
defined in some other package. Just pass:

• In fact, we can use types from any Julia
(AD) package

That’s it!
JIT compiled → fast!

• E.g. Dual numbers and “tapes” in ForwardDiff.jl,
ReverseDiff.jl, Enzyme.jl, Zygote.jl, etc etc.

• For fun, we can even use Symbolics.jl (compiled!):

using Symbolics
@variables z0[1:6] L # creates symbolic vars
track_drift(z0, L)

• Multiple dispatch and JIT compilation enable massive composability of packages
• Plug-and-play (and differentiate) to your heart’s desire!

z0 = Vector{TPS64}(...)
track_drift(z0, L)

https://juliadiff.org/ForwardDiff.jl/stable/
https://github.com/JuliaDiff/ReverseDiff.jl
https://enzyme.mit.edu/julia/stable/
https://fluxml.ai/Zygote.jl/stable/
https://docs.sciml.ai/Symbolics/stable/

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

• We just showed how easy it is in Julia to use any ‘number’ type defined by any package

• In fact, we also can use any optimizer, any (symplectic) integrator, plotting package,
architecture-specific parallelization, etc. written by other people in Julia with minimal effort!
• SciBmad offloads the work from the accelerator physicists to other experts

SciBmad: Because we are lazy!

6

• E.g. suppose you have a tracking
function, and you want the closed orbit:

• We can use any optimizer, written by
other people, immediately. E.g. Optim:

• Or NLSolve, etc.

• This will be JIT compiled + fast too!

function track(ring, z0)
...
return zf # Final phase space position

end

using Optim
optimize(z->norm(z-track(ring, z)), [0,0,0,0,0,0])

using NLsolve
nlsolve(z->norm(z-track(ring, z)), [0,0,0,0,0,0])

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

• Many forward/backward autodiff packages available
• ForwardDiff.jl, ReverseDiff.jl, Enzyme.jl, Zygote.jl
• Our ecosystem will be compatible with all such

• We also don’t need to write any symplectic integrators
DifferentialEquations.jl already has many differentiable ones:

• All of Julia’s plotting packages at one’s fingertips
• Makie.jl, Plots.jl, PyPlot.jl, etc

• Powerful scientific ML tools: https://sciml.ai/

• GPU parallelization using CUDA.jl type CuArray (so long as
structure-of-arrays used on CPU)

• Universally polymorphic functions that work on both CPU and GPU!

• Lattice definition itself in the Julia programming language

SciBmad: Because we are lazy!

7

https://juliadiff.org/ForwardDiff.jl/stable/
https://github.com/JuliaDiff/ReverseDiff.jl
https://enzyme.mit.edu/julia/stable/
https://fluxml.ai/Zygote.jl/stable/
https://docs.sciml.ai/DiffEqDocs/stable/
https://docs.makie.org/stable/
https://docs.juliaplots.org/stable/
https://github.com/JuliaPy/PyPlot.jl
https://sciml.ai/
https://github.com/JuliaGPU/CUDA.jl

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

• That’s ok: we will have a full-featured Python interface to the (fast) SciBmad Julia
ecosystem

• Gradients output for use with PyTorch and Xopt will be simple

• All other features will also be available, except the lattice definition will always be in
Julia (with translators from other formats available)

• For Julia users, the experience will be fantastic. For Python users, it will be as
good as the usual two-language experience: fast underlying library, with a full-
featured Python wrapper for ease of use

But I love Python and refuse to learn Julia!

8

https://github.com/xopt-org/Xopt

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

Stable, officially-registered, ready for use:
• GTPSA.jl: Julia interface to L. Deniau’s Generalised Truncated Power Series Algebra library

In development:
• AcceleratorLattice.jl: Accelerator lattice definition/manipulation
• NonlinearNormalForm.jl: Parametric nonlinear normal forms and analysis of DA maps

including spin using Lie algebraic methods
• AtomicAndPhysicalConstants.jl: Atomic/subatomic particle properties and other physical

constants for simulations

Starting development:
• BeamTracking.jl: CPU/GPU particle tracking methods/interfaces

Current SciBmad Ecosystem Status

9

https://github.com/bmad-sim/GTPSA.jl
https://github.com/bmad-sim/AcceleratorLattice.jl
https://github.com/bmad-sim/NonlinearNormalForm.jl
https://github.com/bmad-sim/AtomicAndPhysicalConstants.jl
https://github.com/bmad-sim/BeamTracking.jl

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

AcceleratorLattice.jl
Accelerator lattice construction and manipulation is done using the Julia language itself:

10

using AcceleratorLattice

Returns a FODO cell with specified quad strength
function FODO(k1)
 @eles begin
 qf = Quadrupole(L = 0.6, Kn1 = k1)
 d = Drift(L = 0.4)
 qd = Quadrupole(L = -0.6, Kn1 = -k1)
 end
 return BeamLine([qf, d, qd, d])
end

@ele begin0 = BeginningEle(pc_ref = 1e7, species_ref = Species("electron"))

Construct a BeamLine using Julia functions!
my_beamline = BeamLine([begin0, FODO(0.36), FODO(0.30)])
my_lat = Lat([my_beamline])

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

AcceleratorLattice.jl
julia> show(lat["qf"][1])
Ele: "qf" (b1>>2) Quadrupole
 AlignmentGroup:
 offset [0.0, 0.0, 0.0] m offset_tot [0.0, 0.0, 0.0] m
 x_rot 0 rad x_rot_tot 0 rad
 y_rot 0 rad y_rot_tot 0 rad
 tilt 0 rad tilt_tot 0 rad
 BMultipoleGroup:
 Order Integrated Tilt (rad)
 1 false 0.0 0.34 Kn1 0.0 Ks1 (1/m^2)
 -0.011341179236737171 Bn1 -0.0 Bs1 (T/m^1)

 FloorPositionGroup:
 r (r_floor) [0.0, 0.0, 0.0] m
 q (q_floor) 1.0 + 0.0⋅i + 0.0⋅j + 0.0⋅k
 theta (theta_floor) 0.0 rad
 phi (phi_floor) 0.0 rad psi (psi_floor) 0.0 rad
 LengthGroup:
 L 0.6 m orientation 1
 s 0.0 m s_downstream 0.6 m
 ReferenceGroup:
 species_ref Species("electron") species_ref_exit Species("electron")
 pc_ref 1.0e7 eV pc_ref_exit 1.0e7 eV
 E_tot_ref 1.000000005e7 eV E_tot_ref_exit 1.000000005e7 eV
 ... Etc ...

11

Fully-featured lattice elements:

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

NonlinearNormalForm.jl

julia> m # Variable m is a map which has 6 variables and 2 parameters in this case
DAMap{Vector{ComplexF64}, Vector{ComplexTPS64}, Quaternion{ComplexTPS64}, Nothing, Bool}:

Variables: 6
Maximum order: 3
Parameters: 2
Parameter order: 3

Reference Orbit Vector{ComplexF64}:
1: 0.0 + 0.0im
2: 0.0 + 0.0im
3: 0.0 + 0.0im
4: 0.0 + 0.0im
5: 0.0 + 0.0im
6: 0.0 + 0.0im

Last plane is coasting: variable #6 is constant
Orbital Ray Vector{ComplexTPS64}:
 Out Real Imag Order Exponent
--
 1: 1.0016106150325099e+00 0.0000000000000000e+00 1 1 0 0 0 0 0 | 0 0
 1: 7.9725998724008134e-03 0.0000000000000000e+00 1 0 1 0 0 0 0 | 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
 596 rows omitted

12

Real and complex parametric DAMaps including spin and coasting beam, for example:

Variables Parameters

Full customizable #
variables and #
parameters

Coasting beam
supported if wanted

Spin!

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

NonlinearNormalForm.jl
julia> m_lin = cutord(m, 2); # extract the linear part in orbital

julia> m_nonlinear = inv(m_lin) ∘ m; # remove the linear part

julia> F = log(m_nonlinear); # Get the Lie operator (including quaternion) generating nonlinear part

julia> m = m_lin ∘ exp(F); # Reconstruct same map using Lie exponent and linear part separately

julia> a = normal(m); # Calculate the nonlinear (parametric) normalizing canonical transformation

julia> R_z = inv(a) ∘ m ∘ a; # Nonlinear amplitude-dependent rotation in regular phase space (x, px, …)

julia> c = to_phasor(m); # Get the transform to phasors basis √(J)*exp(±im*ϕ)

julia> R_J = inv(c) ∘ R_z ∘ c; # Nonlinear amplitude-dependent rotation in phasors basis

julia> a_spin, a0, a1, a2 = factorize(a); # Spin part, nonlinear parameter-dependent fixed point, a1, a2

julia> Σ = equilibrium_moments(m, a); # Calculate equilibrium sigma matrix when fluctuation-dissipation

julia> a = normal(m, m=[0; 1], m_spin=[-1]); # Leaving in a Q_y - Q_spin resonance

13

All the following tools are implemented already:

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

Conclusions
SciBmad is a modern accelerator physics ecosystem which will provide:

❑ Modularity!!
• Maximal code re-use, minimal reinventing the wheel
• Plug-and-play different optimizers, symplectic integrators, tracking methods, etc. with ease

❑ Runs optimally on all architectures, with CPU & GPU parallelization

❑ Easy to use and integrate with other programs/tools

❑ Fully differentiable using automatic differentiation
• Fast, accurate calculation of gradients for optimizations and machine learning using forward and backward differentiation

❑ Full featured accelerator software toolkit
• Linear and nonlinear tracking, nonlinear parametric normal forms including spin, Bmad’s advanced lattice design tools (e.g.

superposition, multipass), etc

• Goal: first accelerator simulations by end of year

14

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

Contributors and Thank You!
• Development of SciBmad is currently in full-gear, and would not be this far along without the

help of many

• Open to more collaborators!

15

▪ Dan Abell (BeamTracking.jl and
AtomicAndPhysicalConstants.jl)

▪ J. Scott Berg

▪ Oleksii Beznozov (BeamTracking.jl - GPU)

▪ Alex Coxe (AtomicAndPhysicalConstants.jl)

▪ Laurent Deniau

▪ Auralee Edelen

▪ Etienne Forest (significant help with
NonlinearNormalForm.jl)

▪ Juan-Pablo Gonzalez

▪ Georg Hoffstaetter de Torquat

▪ Gavin Hunsche (BeamTracking.jl)

▪ Lixing Li (AtomicAndPhysicalConstants.jl)

▪ Chris Mayes

▪ Ryan Roussel

▪ David Sagan (AcceleratorLattice.jl)

▪ Matt Signorelli (NonlinearNormalForm.jl and
GTPSA.jl)

▪ Sophia Yang (BeamTracking.jl)

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

Thank you!
Questions?

16

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

Backup Slides

17

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

C++: Single Dispatch
class A { };
class B : public A { };
class C : public A { };

class Foo {
virtual void my_fun(A* arg1, A* arg2) { std::println("A,A"); }
virtual void my_fun(B* arg1, B* arg2) { std::println("B,B"); }
virtual void my_fun(C* arg1, B* arg2) { std::println("C,B"); }
virtual void my_fun(B* arg1, C* arg2) { std::println("B,C"); }
virtual void my_fun(C* arg1, C* arg2) { std::println("C,C"); }

};

void call_my_fun(A* arg1, A* arg2) {
Foo *pFoo = new Foo;
pFoo->my_fun(arg1, arg2); // SINGLE DISPATCH: prints “A,A”

}

int main() {
A* arg1 = new B();
A* arg2 = new C();

call_my_fun(arg1, arg2); // prints “A,A”
return 0;

}

▪ C++ only uses single dispatch,
so this will print “A,A” even
though both are B,C

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

14th ICAP Conference
Germany, October 2-5, 2024

Julia: Multiple Dispatch

abstract type A end
struct B <: A end
struct C <: A end

my_fun(arg1::A, arg2::A) = println("A,A")
my_fun(arg1::B, arg2::B) = println("B,B")
my_fun(arg1::C, arg2::B) = println("C,B")
my_fun(arg1::B, arg2::C) = println("B,C")
my_fun(arg1::C, arg2::C) = println("C,C")

function call_my_fun(arg1::A, arg2::A)
return my_fun(arg1, arg2)

end

arg1 = B()
arg2 = C()

call_my_fun(arg1, arg2) # prints B,C

▪ Julia will dynamically-dispatch based on the
runtime types

▪ Call to my_fun done by going to method
lookup table using runtime types, and JIT-
compiling my_fun if not already compiled

	Slide 1: SciBmad: A full-featured ecosystem for modern, differentiable accelerator physics simulations
	Slide 2: Accelerator Software Wish-List
	Slide 3: SciBmad: What it is (and isn’t)
	Slide 4: ? What’s that?
	Slide 5: The Power of Multiple Dispatch and JIT
	Slide 6: SciBmad: Because we are lazy!
	Slide 7: SciBmad: Because we are lazy!
	Slide 8: But I love Python and refuse to learn Julia!
	Slide 9: Current SciBmad Ecosystem Status
	Slide 10: AcceleratorLattice.jl
	Slide 11: AcceleratorLattice.jl
	Slide 12: NonlinearNormalForm.jl
	Slide 13: NonlinearNormalForm.jl
	Slide 14: Conclusions
	Slide 15: Contributors and Thank You!
	Slide 16: Thank you! Questions?
	Slide 17: Backup Slides
	Slide 18
	Slide 19

