SciBmad: A full-featured ecosystem for modern,
differentiable accelerator physics simulations

Matt Signorelli, David Sagan

SCIBMAD

14™ International Computational Accelerator Physics Conference
Germany, October 2-5, 2024

L;} Brookhaven

National Laboratory

Accelerator Software Wish-List

—

SCIBMAD

O Modularity!!

* Maximal code re-use, minimal reinventing the wheel

* Plug-and-play different optimizers, symplectic integrators, tracking methods, etc.

with ease
[Runs optimally on all architectures, with CPU & GPU parallelization
 Easy to use and integrate with other programs/tools

O Fully differentiable using automatic differentiation

* Fast, accurate calculation of gradients for optimizations and machine learning
using forward and backward differentiation

] Full featured accelerator software toolkit

* Linear and nonlinear tracking, nonlinear parametric normal forms including spin,
Bmad’s advanced lattice design tools (e.g. superposition, multipass), etc

Can we have all of this? Enter: SciBmad

TR
3 Q
&% &
8)

B
o))
2 Y
NS

Cornl Laboratory for Ac@erator-based ScienceS &ducation

f. BI’Dthaven 14t |CAP Conference
National Laboratory = Germany, October 2-5, 2024

Accelerator--_..___)
Physicist

SR
o S IX e
b A ey

Gk

Sagd
Lattice Design Program
N7 o
A
Ny =)
Control System Programs

IBS Simulation Programs

Etc. vﬂ'

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

SciBmad: What it is (and isn’t) —

SCIBMAD

 SciBmad (formerly called Bmad-Julia) is NOT

x A rewrite of the current Bmad in a different programming language. No Fortran code in SciBmad
x An interface to the current Bmad. Lattice translation between the two will exist though!
x The end of the current Bmad. Maintenance development of the current Bmad will continue

e SciBmad is

v Inspired by the experience (both good and bad) with developing the current Bmad
v" A new software ecosystem for modern, differentiable accelerator physics simulations
v Written fully in the_lulla programming language

* By leveraging the _|u| .il programming language, SciBmad will achieve all points on the
wish-list!

@ |CLASSE

2 ’
o r> Corndl Leboratory for Acaerator-based ScienceS &ducetion

~ BrDth aven 14t |CAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu) 3

julia ? What’s that?

—

ScIBMAD
* Julia is a high-level, HPC language that
“walks like Python, runs like C”
* As simple as Python, but as fastas C i
¥
* Adopts multiple dispatch and just-in- Benchmrk
time (JIT) compilation as central & mtts Tty

paradigms

* Where types are inferable at compile-time, 4
it will be compiled (using LLVM toolkit), else

dynamically-dispatched with runtime type .

C Julia LuaJITRust Go Fortran Java Matlab Python R Octave

* Features a powerful type system for
highly-polymorphic code

TR
3 Q
&% &
8)

B
o))
2 Y
QED A2

Cornl Laboratory for Ac@erator-based ScienceS &ducation

f. BI’Dthaven 14t |CAP Conference
National Laboratory = Germany, October 2-5, 2024

JavaScript Mathematica

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu)

matrix_statistics

e parse_integers

print_to_file
recursion_fibonacci
recursion_quicksort
userfunc_mandelbrot

The Power of Multiple Dispatch and JIT —

SCIBMAD

* Universal polymorphisminJulia is easy and fast! Consider the function:

 Generally |z0 = Vector{Float64}(...)
pass: track drift(ze, L)

* However, say we’d instead like to track a
Taylor map of Truncated Power Series (TPS)
defined in some other package. Just pass:

z0 = Vector{TPS64}(...)| That’sit!
track _drift(ze, L) JIT compiled — fast!

L > Corndll Laboratory for Aclerator-based SvienceS &duction

* |nfact, we can use types from any Julia

function track drift(zO, L)
zf = similar(z0)

zf[1] = z0[1]+z0[2]*L/(1.0+2z0[6])
zf[2] = z0[2]
zf[3] = zO[3]+z0[4]*L/(1.0+z0[6])
zf[4] = z0[4]
zf[5] = zO[5]-L*((z0[2]"*2)+(z0[4]"2))/(1.0+z0[6])"2/2.0
zf[6] = z0[6]
return zf
end

(AD) package
» E.g. Dualnumbers and “tapes”in ForwardDiff.]l,
ReverseDiff.jl, Enzyme.jl, Zygote.jl, etc etc.

* Forfun, we can even use Symbolics.|l (compiled!):

using Symbolics
@variables z0[1:6] L # creates symbolic vars

__—""" track_drift(ze, L)

* Multiple dispatch and JIT compilation enable massive composability of packages
* Plug-and-play (and differentiate) to your heart’s desire!

#)|CLASSE

National Laboratory =~ Germany, Octob

k? BI‘Dthaven 14" |CAP Conference

er 2-5,2024

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu) 5

https://juliadiff.org/ForwardDiff.jl/stable/
https://github.com/JuliaDiff/ReverseDiff.jl
https://enzyme.mit.edu/julia/stable/
https://fluxml.ai/Zygote.jl/stable/
https://docs.sciml.ai/Symbolics/stable/

SciBmad: Because we are lazy! .ﬁ,

<
2 ’
o r> Corndl Leboratory for Acaerator-based ScienceS &ducetion

* We just showed how easy itis in Julia to use any ‘number’ type defined by any package

* |Infact, we also can use any optimizer, any (symplectic) integrator, plotting package,
architecture-specific parallelization, etc. written by other people in Julia with minimal effort!

* SciBmad offloads the work from the accelerator physicists to other experts

» E.g. suppose you have a tracking function track(ring, z0)
function, and you want the closed orbit: return zf # Final phase space position
end

We can use any optimizer, written by

other people, immediately. E.g. Optim: —— Using Optim

optimize(z->norm(z-track(ring, z)), [0,90,0,0,0,0])

Or NLSolve, etc. —» using NLsolve
nlsolve(z->norm(z-track(ring, z)), [0,0,0,0,0,0])

This will be JIT compiled + fast too!

#)|CLASSE

~ BrDth aven 14t |CAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu)

SciBmad: Because we are lazy! —

SCIBMAD

Symplectic Integrators
¢ M a ny fO rwa I‘d/ b acC kwa rd a utOd |ff pa C ka ge S aval I.a b le Note that all symplectic integrators are fixed timestep only.
[) FO rwa rd Diff.‘ll’ Reve rseDiff.jl’ Enzyme.Jl’ Z: {gote.ll « SymplecticEuler: First order explicit symplectic integrator
. . . « VelocityVerlet: 2nd order explicit symplectic integrator. Requires f_2(t,u) = v, i.e. a second order ODE.
b O U r eCOSYSte m WI I.l. be CO m patl bl.e Wlth a l.l. S U C h « VerletLeapfrog: 2nd order explicit symplectic integrator.

. PseudoVerletLeapfrog: 2nd order explicit symplectic integrator.
. McAte2: Optimized efficiency 2nd order explicit symplectic integrator.

« Ruth3: 3rd order explicit symplectic integrator.

° We also qu’t nee.d to write any symplectic !ntegrat.ors . McAte3:O?ﬁmk':zetidefﬁcie:c?/?»rd OTder‘e)'(plicitsympIecticintegrator.
DifferentialEquations.jl already has many differentiable ones: . . @ e e

« McAte4: 4th order explicit symplectic integrator. Requires quadratic kinetic energy.

« CalvoSanz4: Optimized efficiency 4th order explicit symplectic integrator.

« McAte42: 4th order explicit symplectic integrator. (Broken)

« McAte5: Optimized efficiency 5th order explicit symplectic integrator. Requires quadratic kinetic energy.

i Al.l. Of Ju‘.ia’s plotting paCkageS at one,s fingertips « Yoshida6: 6th order explicit symplectic integrator.
. . . . « KahanLi6: Optimized efficiency éth order explicit symplectic integrator.
* Makie.jl, Plots.jl, PyPlot.jl, etc e ’

* Powerful scientific ML tools: https://sciml.ai/

3

ﬁ
ed Simu)atj

@Tesv

* GPU parallelization using CUDA.jltype CuArray (so long as
structure-of-arrays used on CPU)

* Universally polymorphic functions that work on both CPU and GPU!

Accelerator-_._____)
Physicist

* Lattice definition itself in the Julia programming language Actuf

C LASS E ? BrDth aven 14t |CAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu)

Cornl Laboratory for Ac@erator-based ScienceS &ducation

https://juliadiff.org/ForwardDiff.jl/stable/
https://github.com/JuliaDiff/ReverseDiff.jl
https://enzyme.mit.edu/julia/stable/
https://fluxml.ai/Zygote.jl/stable/
https://docs.sciml.ai/DiffEqDocs/stable/
https://docs.makie.org/stable/
https://docs.juliaplots.org/stable/
https://github.com/JuliaPy/PyPlot.jl
https://sciml.ai/
https://github.com/JuliaGPU/CUDA.jl

But | love Python and refuse to learn Julia! .ﬁ,

* That’s ok: we will have a full-featured Python interface to the (fast) SciBmad Julia
ecosystem

* Gradients output for use with PyTorch and Xopt will be simple

* All other features will also be available, except the lattice definition will always be in
Julia (with translators from other formats available)

* For Julia users, the experience will be fantastic. For Python users, it will be as
good as the usual two-language experience: fast underlying library, with a full-
featured Python wrapper for ease of use

C LASS E ? BI‘DthaVBI‘I 14t |CAP Conference Matt Signorelli (mgs255@cornell.edu)
Dl . National Laboratory Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu)

Laboretory for Ac@eraor-based ScienceS &ducation

https://github.com/xopt-org/Xopt

Current SciBmad Ecosystem Status —

SCIBMAD

Stable, officially-registered, ready for use:
* GTPSA.jl: Juliainterface to L. Deniau’s Generalised Truncated Power Series Algebra library

In development:
* AcceleratorlLattice.jl: Accelerator lattice definition/manipulation

* NonlinearNormalForm.jl: Parametric nonlinear normal forms and analysis of DA maps
including spin using Lie algebraic methods

« AtomicAndPhysicalConstants.jl: Atomic/subatomic particle properties and other physical
constants for simulations

Starting development:
« BeamTracking.jl: CPU/GPU particle tracking methods/interfaces

s 2\
&l B
o)
X B %%
2 Corndl Lebor: S

aory for Acaeretor-based ScienceS &ducation

? BrDth aven 14"ICAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu)

https://github.com/bmad-sim/GTPSA.jl
https://github.com/bmad-sim/AcceleratorLattice.jl
https://github.com/bmad-sim/NonlinearNormalForm.jl
https://github.com/bmad-sim/AtomicAndPhysicalConstants.jl
https://github.com/bmad-sim/BeamTracking.jl

AcceleratorlLattice.jl —

SCIBMAD

Accelerator lattice construction and manipulation is done using the Julia language itself:

using AcceleratorLattice

Returns a FODO cell with specified quad strength
function FODO(k1)
@eles begin

gf = Quadrupole(L = 0.6, Knl = k1)

d = Drift(L = 0.4)

gd = Quadrupole(L = -0.6, Knl = -k1)
end
return BeamLine([qf, d, qd, d])

end

@ele begin®

BeginningEle(pc_ref

le7, species_ref = Species("electron"))

Construct a BeamLine using Julia functions!
my beamline = BeamLine([begin@, FODO(©.36), FOD0O(©.30)])
my lat = Lat([my_beamline])

C LASS E ? Broaokhaven 14"ICAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu) 10

Cornl Laboratory for Ac@erator-based ScienceS &ducation

AcceleratorlLattice.jl —

SCIBMAD

Fully-featured lattice elements:

julia> show(lat["qf"][1])
Ele: "gf" (bl>>2) Quadrupole

AlignmentGroup:

offset [0.0, 0.0, ©0.0] m offset tot [0.0, 0.0, ©0.0] m

X_rot @ rad x_rot_tot @ rad

y_rot @ rad y_rot_tot @ rad

tilt @ rad tilt tot @ rad
BMultipoleGroup:

Order Integrated Tilt (rad)

1 false 0.0 0.34 Knl 0.0 Ksl (1/m"2)
-0.011341179236737171 Bnl -0.0 Bsl (T/m”1)

FloorPositionGroup:

r (r_floor) [0.0, 0.0, ©0.0] m

q (g_floor) 1.0 + 0.0:1 + 9.0-7 + 0.0k

theta (theta floor) 0.0 rad

phi (phi_floor) 0.9 rad psi (psi_floor) 0.0 rad
LengthGroup:

L 0.6 m orientation 1

S 0.0 m s_downstream 0.6 m
ReferenceGroup:

species_ref Species("electron") species ref exit Species("electron")

pc_ref 1.0e7 eV pc_ref exit 1.0e7 eV

E_tot_ref 1.000000005e7 eV E_tot_ref exit 1.000000005e7 eV

Etc ...

C LASS E ? BrUUkh aven 14"ICAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu) 11

Cornl Laboratory for Ac@erator-based ScienceS &ducation

NonlinearNormalForm.jl —

SCIBMAD

Real and complex parametric DAMaps including spin and coasting beam, for example:

julia> m # Variable m is a map which has 6 variables and 2 parameters in this case
DAMap{Vector{ComplexF64}, Vector{ComplexTPS64}, Quaternion{ComplexTPS64}, Nothing, Bool}:
4 Variables: e Ful.l customizable #
Maximum order: 3 variables and # .
Parameters: 2 parameters Spin!
Parameter order: 3
Reference Orbit Vector{ComplexF64}:
1: 0.0 + 0.0im
2: 0.0 + 0.0im
3: 0.0 + 0.01im]
4: 0.0 + 0.09im Coasting beam
5: 0.0 + 0.01m supported if wanted
6: 0.0 + 0.01im .
Variables Parameters
Last plane is coasting: variable #6 is constant
Orbital Ray Vector{ComplexTPS64}:
Out Real Imag Order Exponent
1: 1.0016106150325099e+00 0.0000000000000000e+00 1 1 (%] %] (%] (%] (%] | (%] %]
1: 7.9725998724008134e-03 0.0000000000000000e+00 1 (%] 1 %] (%] (%] (%] | (%] %]
596 rows omitted

C LASS E ? BrDth aven 14"ICAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu) 12

Cornl Laboratory for Ac@erator-based ScienceS &ducation

NonlinearNormalForm.jl —

SCIBMAD

All the following tools are implemented already:

julia> m_1lin = cutord(m, 2); # extract the linear part in orbital

julia> m_nonlinear = inv(m_lin) o m; # remove the linear part

julia> F = log(m_nonlinear); # Get the Lie operator (including quaternion) generating nonlinear part
julia> m = m_1lin o exp(F); # Reconstruct same map using Lie exponent and linear part separately

julia> a = normal(m); # Calculate the nonlinear (parametric) normalizing canonical transformation
julia> R_z = inv(a) o m o a; # Nonlinear amplitude-dependent rotation in regular phase space (x, px, ..)
julia> ¢ = to_phasor(m); # Get the transform to phasors basis V(J)*exp(xim*g)

julia> R_J = inv(c) o R_z o c; # Nonlinear amplitude-dependent rotation in phasors basis

julia> a_spin, a@, al, a2 = factorize(a); # Spin part, nonlinear parameter-dependent fixed point, al, a2
julia> X = equilibrium _moments(m, a); # Calculate equilibrium sigma matrix when fluctuation-dissipation

julia> a = normal(m, m=[0; 1], m _spin=[-1]); # Leaving in a Q y - Q_spin resonance

C LASS E ? BrDth aven 14t |CAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu) 13

Cornl Laboratory for Ac@erator-based ScienceS &ducation

Conclusions),

SCIBMAD

SciBmad is a modern accelerator physics ecosystem which will provide:

& Modularity!!

* Maximal code re-use, minimal reinventing the wheel
* Plug-and-play different optimizers, symplectic integrators, tracking methods, etc. with ease

& Runs optimally on all architectures, with CPU & GPU parallelization
i} Easy to use and integrate with other programs/tools

& Fully differentiable using automatic differentiation
* Fast, accurate calculation of gradients for optimizations and machine learning using forward and backward differentiation

¥ Full featured accelerator software toolkit

* Linear and nonlinear tracking, nonlinear parametric normal forms including spin, Bmad’s advanced lattice design tools (e.g.
superposition, multipass), etc

* Goal: first accelerator simulations by end of year

C LASS E ? BrUUkhaVBn 14t |CAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu) 14

Cornl Laboratory for Ac@erator-based ScienceS &ducation

Contributors and Thank You! &S

SCIBMAD

* Development of SciBmad is currently in full-gear, and would not be this far along without the

help of many

= Dan Abell (BeamTracking.jl and =

AtomicAndPhysicalConstants.jl)

= J.Scott Berg

= Oleksii Beznozov (BeamTracking.jl - GPU)
= Alex Coxe (AtomicAndPhysicalConstants.jl)

= |Laurent Deniau

= Auralee Edelen

= Etienne Forest (significant help with

NonlinearNormalForm.jl)

= Juan-Pablo Gonzalez

* Open to more collaborators!

@ |CLASSE

2 ’
R E> Corndl Leboratory for Acaerator-based ScienceS &ducetion

k~

BI’Dthaven 14t |CAP Conference
National Laboratory Germany, October 2-5, 2024

Georg Hoffstaetter de Torquat

Gavin Hunsche (BeamTracking.jl)

Lixing Li (AtomicAndPhysicalConstants.jl)
Chris Mayes

Ryan Roussel

David Sagan (AcceleratorLattice.jl)

Matt Signorelli (NonlinearNormalForm.jl and
GTPSA.jl)

Sophia Yang (BeamTracking.jl)

Matt Signorelli (mgs255@cornell.edu)
David Sagan (dcs16@cornell.edu) 15

—

SciBMAD
l'hank you!
o 9
uestions:
C LASS E ? BrDth aven 14t |CAP Conference Matt Signorelli (mgs255@cornell.edu)
) el W% V) e National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu) 16

=)

SCIBMAD
Backup Slid
SR C LASSE k? Broaokhaven 14"ICAP Conference Matt Signorelli (mgs255@cornell.edu)
Y | o el W) V) e National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu) 17

C++: Single Dispatch =y

-class A { }; SCcIBMAD
class B : public A { };
class C : public A { };
class Foo {
virtual void my_ fun(A* argl, A* arg2) { std::println("A,A"); }
virtual void my_ fun(B* argl, B* arg2) { std::println("B,B"); }
virtual void my_ fun(C* argl, B* arg2) { std::println("C,B"); }
virtual void my_ fun(B* argl, C* arg2) { std::println("B,C"); }
virtual void my_ fun(C* argl, C* arg2) { std::println("C,C"); }
¥
void call _my_ fun(A* argl, A* arg2) { = C++only uses single dispatch,
Foo *PFOO: new Foo; p so this will print “A,A” even
Foo->m un(argl, arg2); SINGLE DISPATCH: prints “A,A”
} P y_fun(arg 82) P though both are B,C
int main() {
A* argl = new B();
A* arg2 = new C();

call my fun(argl, arg2); // prints “A,A”
return 0;

C LASS E ? Broaokhaven 14"ICAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu)

Cornl Laboratory for Ac@erator-based ScienceS &ducation

Julia: Multiple Dispatch =y

SCIBMAD

abstract type A end
struct B <: A end
struct C <: A end

my fun(argl::A, arg2::A) = println("A,A")

my_fun(argl::B, arg2::B) = println("B,B") = Juliawill dynamically-dispatch based on the
my fun(argl::C, arg2::B) = println("C,B") runtime types

my fun(argl::B, arg2::C) = println("B,C")

my fun(argl::C, arg2::C) = println("C,C")

= Callto my fun done by going to method
lookup table using runtime types, and JIT-

function call my fun(argl::A, arg2::A) compiling my_fun if not already compiled

return my_fun(argl, arg2)

end
argl = B()
arg2 = C()

call my fun(argl, arg2) # prints B,C

C LASS E ? BrDth aven 14t |CAP Conference Matt Signorelli (mgs255@cornell.edu)
National Laboratory = Germany, October 2-5, 2024 David Sagan (dcs16@cornell.edu)

Cornl Laboratory for Ac@erator-based ScienceS &ducation

	Slide 1: SciBmad: A full-featured ecosystem for modern, differentiable accelerator physics simulations
	Slide 2: Accelerator Software Wish-List
	Slide 3: SciBmad: What it is (and isn’t)
	Slide 4: ? What’s that?
	Slide 5: The Power of Multiple Dispatch and JIT
	Slide 6: SciBmad: Because we are lazy!
	Slide 7: SciBmad: Because we are lazy!
	Slide 8: But I love Python and refuse to learn Julia!
	Slide 9: Current SciBmad Ecosystem Status
	Slide 10: AcceleratorLattice.jl
	Slide 11: AcceleratorLattice.jl
	Slide 12: NonlinearNormalForm.jl
	Slide 13: NonlinearNormalForm.jl
	Slide 14: Conclusions
	Slide 15: Contributors and Thank You!
	Slide 16: Thank you! Questions?
	Slide 17: Backup Slides
	Slide 18
	Slide 19

