Integrated Simulation of Cavity Design and Radiation Transport (ACE3P + Geant4)

Lixin Ge

SLAC National Accelerator Laboratory

October 3, 2024

Outline

- Introduction
- Simulation workflow
 - ACE3P
 - Geant4
 - ACE3P and Geant4 integration
- Applications
- Summary

Introduction

- Dark current radiation affects the performance of accelerators
 - Field emission and its adverse consequences observed at CEBAF upgrade cryomodules
- Radiation simulation requires multiple separate calculations
 - Electromagnetic field
 - Particles tracking
 - Radiation
- A standalone software package integrates ACE3P and Geant4 for dark current radiation effects study
 - Provide a geometric tool to match the boundaries at the interface of different computational domains used in ACE3P and Geant4.
 - Develop a particle data transfer capability between ACE3P and Geant4 based on the standardized openPMD format.
 - Implement a Python script to control the integrated simulation workflow.
- Project is supported by US DOE HEP US-Japan Science and Technology Cooperation Program (2022-2025)

ACE3P for Multi-Physics Accelerator Modeling

- ACE3P, developed at SLAC, is a comprehensive suite of *conformal*, *high-order*, *C++/MPI based parallel finite-element (FE) multiphysics codes* including electromagnetic (EM), thermal and mechanical capabilities.
 - Based on curved high-order finite elements for high-fidelity modeling
 - Implemented on massively parallel computers for increased memory (problem size) and speed

ACE3P (Advanced Computational Electromagnetics 3P)

Frequency Domain:	Omega3P	– Eigensolver (damping)			
	<mark>S3P</mark>	– S-Parameter			
<u>Time Domain</u> :	ТЗР	 Wakefields and Transients 			
Particle Tracking:	Track3P	 Multipacting and Dark Current 			
EM Particle-in-cell:	Pic3P	– RF guns & space charge effects			
Multi-physics:	TEM3P	– EM, Thermal & Mechanical analysis			
Static Particle-in-cell:	Gun3P	 DC guns & space charge effects 			

High-fidelity, high-accuracy simulation for virtual prototyping of accelerator components at large scale

resonant mode

LCLS-II gun temperature distribution

IOT gun beam propagation

FRIB cavity multipacting

High Performance Computing (HPC) for Solution Speedup

Numerical libraries used in ACE3P

Libraries in linear algebra, linear

solver, eigensolver, partitioning

MUMPS, SuperLU, PETSc

and data format:

ARPACK

ParMetis, Zoltan

Netcdf. HDF5

Cori: Cray XC40

- 632,672 compute cores
- 1 petabytes of memory
- peak performance of 27.9 petaflops/sec

Perlmutter: Cray EX

- 3072 CPU nodes
- 1536 GPU nodes
- 2.2 petabytes of memory
- peak performance: 3-4 times Cori

Migration from NERSC Cori to Perlmutter (2023)

- Numerical libraries installed using spack for managing HPC ٠ packages
- Interfaced to PETSc GPU backend for linear/nonlinear ٠ solvers

Robust code infrastructure exploits compute power of emerging architecture.

ACE3P Dark Current Simulation Workflow

6

Large-Scale Dark Current Simulation by Track3P

- Track3P run on NERSC Edison
 - 10 nodes
 - 240 cores
 - 7 minutes
 - 50 RF cycles

Geant4 for Radiation Transport Simulation

- A toolkit to create simulations of the passage of particles or radiation through matter
 - ...
 - Radiation dose
 - Positron source
 - ...
- Open source license
- Webpage: https://geant4.web.cern.ch
- Development for this project
 - Geometry model converter
 - Particles I/O

BaBar at SLAC

Workflow for Integrated ACE3P and Geant4 Simulation

Import of CAD Geometry Model into Geant4

Model imported into Geant4 Triangular facet surface mesh generated by Cubit

Particle Data I/O

- Develop a particle data transfer capability between ACE3P and Geant4
- Based on the standardized openPMD format

x	Y	Ζ (Time RF Cycle)	Energy	Num. Electrons	Mom_X	Mom_Y	Mom_Z	Boundary ID
3.98453e-02	1.11643e-02	4.46050e-02	1.08810e+00	1.64804e+05	6.49938e+03	9.61114e-01	2.69174e-01	-6.16865e-0	26
8.35555e-03	-1.18983e-02	-8.51440e-02	1.12348e+00	3.35163e+05	6.22911e+03	3.68485e-01	-5.23249e-01	-7.68394e-0	1 6
5.92626e-03	1.39628e-02	5.49185e-02	1.47410e+00	3.42393e+05	6.73727e+03	2.46472e-01	5.81169e-01	-7.75560e-0	16
1.01297e-02	-1.31314e-02	5.49850e-02	1.49753e+00	3.60403e+05	6.52320e+03	3.70080e-01	-4.80048e-01	-7.95358e-0	16
3.63805e-03	1.19656e-02	-8.89980e-02	1.54512e+00	1.81794e+05	1.08322e+04	9.82131e-02	1.62213e-01	9.81856e-0	1 6
6.02885e-03	-4.09382e-02	4.17373e-02	2.06998e+00	1.61448e+05	6.36634e+03	1.45044e-01	-9.86273e-01	-7.89183e-0	26
2.38938e-03	-2.22900e-02	5.49851e-02	2.38574e+00	4.73590e+05	7.75671e+03	2.90391e-02	-1.01166e-01	-9.94446e-0	16

OpenPMD

- Open standard for particle-mesh data files
- Standard for metadata and naming schemes
- Suits for any kind of hierarchical, self-describing data format
- Improve code portability and performance

ACE3P+Geant4 Integrated Tool Test - 7-Cell Structure

Electromagnetic RF field (S3P)

- Mesh : 750k tetrahedral elements
- Frequency: 2.856 GHz
- On NERSC Cori: 10 nodes, 320 cores, < 1 minute

Dark current simulation (Track3P)

- Particles emitted for 6 RF cycles
- Total emitted particles: 2.6 million
- Run 12 RF cycles
- On Cori: 2 nodes, 30 minutes

Radiation simulation (Geant4)

- Load particles information from Track3P to Geant4
- Define structure from CAD
 model
- Radiation simulation

Radiation Dose Measurements for KEK 56-Cell Structure

Radiation doses along the structure measured by using two kinds of dosimeter

Performed at KEK

ACE3P Field Calculation for 56-Cell Structure

Computational resource Model & mesh S3P calculation Frequency: 2.856 GHz S-band structure provided by KEK **NERSC** supercomputer S-parameter calculation Simulation model built by Cubit 4 CPU nodes, 64 cores/node 3.4M curved tetrahedral mesh S(0,0) S(0,1) S(1.0) S(1,1) Several minutes to solve one mode generated by Cubit 2.1e-02 6.9e-01 6.9e-01 3.73e-02 Mechanical model

EM field calculated by S3P

ACE3P Particle Tracking Calculation for 56-Cell Structure

15

Geant4 Radiation Transport Calculation for 56-Cell Structure

Geometrical model for Geant4

Geant4 Radiation Transport Calculation for 56-Cell Structure (Cont'd)

Radiation calculation by Geant4

17

Radiation Dose along 56-cell Structure

Radiation dose calculation by Geant4

Inverse Approach for Dark Current Analysis – Future Work

Incorporation of machine learning (ML) tools based on multi-fidelity Bayesian optimization

- Using dark current and radiation measured data, Track3P/Geant4 simulation used to train ML model with objectives to
 - Identify locations contributing to dark current
 - Determine enhancement factor, β, distribution for field emission

- Identification of emission origins will provide insights on how to mitigate dark current effects through cavity processing and on establishing a better field emission model.
- Refer Auralee Edelen's talk "Machine learning models for particle accelerator optimization."

Conclusion

- An integrated simulation workflow for cavity design and radiation transport (ACE3P + Geant4) has been developed.
- The integrated tool has been used for large-scale dark current and radiation effects study of KEK 56-cell S-band accelerating structure and benchmarked well with measurement data.
- Positron source and its capture simulation capabilities will be added to the integrated tool.
- Machine learning tools are in the process of integrating into the tool from an inverse approach using measured data.

Acknowledgements

SLAC Collaborators Zenghai Li, Cho-Kuen Ng, Liling Xiao

KEK Collaborator

Hiroyasu Ego, Yoshinori Enomoto, Hiroshi Iwase, Yu Morikawa, Takashi Yoshimoto

This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. **Thank You!**

SLAC