

CALCULATING THE TRANSVERSE SHUNT IMPEDANCE FROM EIGENMODE RESULTS

ICAP 2024

Leon Kronshorst

A B B B B

Institute for Accelerator Science and Electromagnetic Fields

2024-10-02

TABLE OF CONTENT

Motivation

The single mode cavity

Calculation methods for the TSI

Gauging the CST export

MOTIVATION Section 1

MOTIVATION UPGRADE TO PETRA IV

Active planning process of the upgrade PETRA III -----> PETRA IV

- **Goal -** 4th generation light source:
 - Low emittance
 - High beam current
 - Long beam lifetime
 - Stable particle acceleration and storage

Toucheck effect

Intrabeam scattering

Challenges:

Active 3rd harmonic cavity

MOTIVATION ACTIVE 3rd HARMONIC CAVITY

Requirements of the 3rd harmonic cavity

- No phase dependency of the voltage
- Inexpensive and simple manufacturing
- Mitigation of higher order modes (HOM)

$$V(t) = V_1 \cos(\omega_{\mathsf{RF}} t + \Phi_1) + V_2 \cos(3\omega_{\mathsf{RF}} t + \Phi_2)$$

THE SINGLE MODE CAVITY Section 2

THE SINGLE MODE CAVITY

- Resonator Section: resonant frequency, $f_{res} = f_1$
 - Desired accelerating mode resonates around the beam axis
- Waveguide Section: Connected to damper to attenuate HOMs
 - Cutoff frequency between resonant mode and next higher, $f_1 \ll f_c \lesssim f_2$

[1] Kronshorst et al.: Design of a single mode 3rd harmonic cavity for PETRA IV, Preprint IPAC'24, 10.18429/JACoW-IPAC2024-TUPG52

THE SINGLE MODE CAVITY

UNDESIRED HIGHER ORDER MODE

- Not all HOM couple to the waveguide section
- These modes have to be studied
 - Either their influence is negligible
 - Or their occurrence has to be suppressed

How to assess the different transverse modes?

 \Rightarrow Through the kick factor k_{\perp} and shunt impedance $R_{S,n,\perp}$

CALCULATION METHODS FOR THE TSI Section 3

3 different approaches to obtain the transverse shunt impedance

frequency domain impedance solver

time domain wakefield solver

eigenmode solver

- It gauges the interaction of the particle beam and the cavity wall in transverse direction
- Relation to the kick factor

•
$$k_{n,\perp} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}\omega \frac{\omega_{r,n}}{\omega} \frac{\vec{R}_{\mathrm{S},n,\perp}}{1+jQ\left(\frac{\omega}{\omega_{r,n}}-\frac{\omega_{r,n}}{\omega}\right)} \mathrm{e}^{-\omega^2 \sigma^2}$$
 [2, 3]

- Panofsky-Wenzel theorem [4]
 - $\vec{p} = \frac{q}{c} \int_0^l dz \left[\vec{E} + c\vec{e}_z \times \vec{B} \right] e^{j\omega \frac{z}{c}}$ • $\frac{\partial}{\partial t} \vec{p}_\perp = -c \nabla_\perp p_\parallel$

[2] Mosnier: Analyse de la stabilite de faisceau dans un accelerateur lineaire..., Nucl. Instruments and Methods in Ph. Research, 1987

[3] Zotter, Kheifets: Impedances and wakes in high-energy particle accelerators, 2000, World Scientific

[4] Panofsky, Wenzel: Some Considerations Concerning the Transverse Deflection of Charged Particles in Radio-Frequency Fields, Review of Scientific Instruments 1956

[5] Quetscher, Gjonaj: Impedance computation for large accelerator strucures using a domain decomposition method, Preprint IPAC'24, 10.18429/JACoW-IPAC2024-THPC62

frequency domain impedance solver $\nabla \times \nabla \times \underline{\vec{E}} - k_0^2 \underline{\vec{E}} = -jk_0 Z_0 \underline{\vec{J}}(\vec{r}_1^{\perp}, \omega)$ to solve not $\underline{Z}_{\parallel}(\omega, \vec{r}_2^{\perp}) = -\frac{1}{q_1 q_2} \int_0^l \mathrm{d}z \underline{\vec{E}}(\vec{r}_1^{\perp}, \vec{r}_2^{\perp}, z, \omega) \cdot \underline{\vec{J}}_s^*(\vec{r}_2^{\perp})$ [5]implemented in CST Panofsky-Wenzel theorem $\vec{R}_{\mathrm{S},\mathrm{n},\perp} = \underline{\vec{Z}}_{\perp}(\omega_{r,n}, \vec{r}_{2}^{\perp}) = \frac{c}{\omega_{r,n}} \nabla_{\perp} \underline{Z}_{\parallel}(\omega_{r,n}, \vec{r}_{2}^{\perp})$

[5] Quetscher, Gjonaj: Impedance computation for large accelerator strucures using a domain decomposition method, Preprint IPAC'24, 10.18429/JACoW-IPAC2024-THPC62

[6] Weiland, Wanzenberg: Wake fields and impedances, Frontiers of Particle Beams 1992, 10.1007/3-540-55250-2_26

TECHNISCHE

UNIVERSITÄT

DARMSTADT

DESY.

TECHNISCHE

LINUVERSITÄT

CALCULATION METHODS FOR THE TSI

TECHNISCHE

LINUVERSITÄT

DESY.

[7] Quetscher, Gjonaj: unpublished

GAUGING THE CST EXPORT Section 4

GAUGING THE CST EXPORT

- Gauging the transverse shunt impedance calculation method necessitates investigating the CST export error
- Toy model: circular cylindrical cavity
 - For the TM₁₁₀-mode
 - Analytically solvable

∑×

GAUGING THE CST EXPORT

ENERGY OF CYLINDRICAL CAVITY

GAUGING THE CST EXPORT

LONGITUDINAL AND TRANSVERSE FIELD INTEGRALS CLOSE TO BEAM AXIS

- Does this quality hold for values close to the cavity center?
 - Field amplitudes are smaller \rightarrow possibly higher inaccuracy
- Investigation of longitudinal and transverse voltage for $x_{offset} = 5 \text{ mm}$

rel. error compared to analytical value	longitudinal voltage	transverse voltage
preconditioned meshgrid	$5.18818 imes 10^{-5}$	$8.244978 imes 10^{-5}$
free meshgrid	$5.18818 imes 10^{-5}$	$8.244978 imes 10^{-5}$

- At least for this export no deviation can be observed
- \Rightarrow The meshgrid does not need preconditioning to the integration axis

EVALUATION OF THE EM ANSATZ

EVALUATION OF THE EM ANSATZ

APPLICATION TO THE SINGLE MODE CAVITY Section 6

APPLICATION TO THE SINGLE MODE CAVITY

qTE_{112,even}-Mode
 *f*₁₃ = 2.2499 GHz

CONCLUSION/OUTLOOK Section 7

CONCLUSION/OUTLOOK

- Conclusion
 - The eigenmode ansatz without any simplifying assumptions seems promising.
 - The discrepancy with the usually used function derived with Panofsky-Wenzel is concerning.
- Outlook
 - Investigation of difference for the two eigenmode methods
 - Comparison with frequency domain simulation
 - Investigate the radial dependency
 - Use methodology to gauge HOM of cavity and further optimize it