Coupled Simulations of Collimator Irradiation in Fourth Generation Light Sources

Nathan Cook^{*+}, Christopher Hall^{*}, Dongwook Lee^{**}, Sean Riedel^{**} Jeffrey Dooling***, A.J. Dick***, Alex Grannan***, Youngjun Lee***, Gary Navrotski***, Ryan Lindberg***, Michael Borland***

⁺ncook@radiasoft.net

This material supported by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357.

Boulder, Colorado USA | radiasoft.net

^{*} RadiaSoft LLC, Boulder, CO ** University of California at Santa Cruz, Santa Cruz, CA, USA ****Argonne National Laboratory, Lemont, IL, USA

International Computational Accelerator Physics Conference 2024 October 2, 2024

Fourth Generation Light Sources Compromise Machine Protection

• Beam intensity in 4th generation light sources threatens machine protection in the event of a whole beam abort

• APS-U promises a 70-fold increase in beam brightness

- Significant reduction in horizontal beam size via multi-bend achromat lattice upgrade along with injection improvements
- Stored current will also increase by a factor of 2 for some modes
- Swap-out injection presents new risks during operation
- APS-U features beam abort collimator system to intercept particles in the event of a sudden loss event
 - RF system is tripped to steer beam towards inboard collimator protrusion
 - Vertically-translatable collimators enable variable capture of particles ahead of high priority sectors
 - Collimators are positioned to localize radiation in regions of maximum shielding

"Coupled Simulations of Collimator Irradiation in Fourth Generation Light Sources"

Collimator inside of vacuum chamber

Experiments Indicate Significant damage to collimators for high brightness beams

• Significant damage to collimators is expected under nominal beam incidence

- Variations in fill pattern and operating current will modify observed damage
- Variations in collimator material can be effective in modifying damage patterns
- Images indicate melting, fluid flow, and condensation of material following beam strike

Evaluation and prediction of collimator performance requires multi-physics modeling

- - Beam dynamics within the ring
 - Beam-dose deposition
 - Particle-matter interaction codes can capture relevant energy loss and subsequent deposition in collimator
 - Collimator material response
 - Material-specific ionization, heating, dissipation, phase change, and advection
 - Other physics of interest
 - Magnetic field effects, including magnetohydrodynamics and wakefields
 - Radiation propagation downstream of the interaction can affect other compensation tools
- Complementary efforts to understand requirements for LHC tertiary collimators
 - Tertiary collimators protect critical IPs
 - Three-steep simulation approach
 - **Particle tracking of proton beams with SIXTRACK**
 - **Energy deposition calculations with FLUKA**
 - Hydrodynamic simulations of thermomechanical response via AUTODYN

E. Quaranta et al., Phys. Rev. Accel. Beams 20, 091002 (2017) DOI: 10.1103/PhysRevAccelBeams.20.091002

• Multi-faceted dynamics of beam strikes requires multi-physics models for complete understanding

• Need electron dynamics including accurate transverse profile under varying fill patterns, RF response, and scattering

A simulation cycle for self-consistent collimator irradiation

• Three-code coupling permits self-consistent spatiotemporal evolution of collimators

- 1. elegant provides particle dynamics
 - 1. Tracks beam through APS lattice, including RF dynamics resulting from simulated abort.
 - 2. Outputs beam coordinates at the collimator surface entrance
- 2. FLUKA provides particle-matter interaction
 - 1. Monte-Carlo estimation of particle losses
 - 2. Multiple Coloumb scattering, bremmstrahlung, pair production
 - 3. Produces a 3D map of the energy deposition (resolution can be varied)
 - 4. Returns coordinates of surviving source particles for elegant
- 3. FLASH provides (magneto)hydrodynamics response of collimator
 - 1. Translates energy deposition into corresponding state variables.
 - 2. Computes thermal (and magnetic) transport through materials
 - 3. Enables identification of phase changes via user-specified models
 - 4. Subsequently, advects materials in fluid state and updates transport
- FLUKA–FLASH subloop enables repeated estimation of deposition and corresponding evolution within a single pass

radiasoft

Inter-bunch dynamics for varying fill patterns can be captured

"Coupled Simulations of Collimator Irradiation in Fourth Generation Light Sources"

5/19

FLUKA permits accurate, adaptive dose calculations

FLUKA is a general-purpose tool for particle transport and particle interaction with matter

- Our use case: Monte Carlo calculations of electron and photon interactions across a broad energy range
- Sophisticated geometry support for representing complex structures

Dosimetry calculations are sensitive to particle statistics and number of interaction cycles

- in runtime and saturates at low particle counts

radiasoft

"Coupled Simulations of Collimator Irradiation in Fourth Generation Light Sources"

Multiple Coloumb scattering, Bremmstrahlung, secondary photon interactions (pair production, scattering)

FLASH provides hydrodynamic response for a range of materials

• FLASH is a modular, multiphysics tool for radiation-hydrodynamics systems

Compressible flow evolution on a block-structured mesh with 3T representation of fluid (electron, ion, radiation)

$$\begin{cases} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{v}) = 0\\ \frac{\partial}{\partial t} (\rho \boldsymbol{v}) + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{v}) + \nabla P_{\text{tot}} = 0\\ \frac{\partial}{\partial t} (\rho E_{\text{tot}}) + \nabla \cdot [(\rho E_{\text{tot}} + P_{\text{tot}}) \boldsymbol{v}] = Q_{\text{las}} - \nabla \cdot \boldsymbol{q} \end{cases}$$

Magnetic field evaluation via unsplit, staggered mesh scheme

• Specific capabilities for laboratory and high energy density plasma systems:

- Single fluid, multi-species description with adjustable compositions
- Arbitrary specification of temperature, density profiles for initial conditions
- Tabulated EOS for flexible internal energy, ionization, and opacity
- Configurable time-dependent energy deposition from external sources
- HPC capable AMR, parallel I/O, scaling to 10s of thousands of cores (MPI)
- openPMD support is in development for coupling to community PIC codes

Accessible through download and through Sirepo app

http://flash.rochester.edu/

radiasoft

Try it out: <u>https://www.sirepo.com/flash#/</u>

$$\begin{cases} \frac{\partial}{\partial t}(\rho e_{\rm i}) + \nabla \cdot (\rho e_{\rm i} \boldsymbol{v}) + P_{\rm i} \nabla \cdot \boldsymbol{v} = \rho \frac{c_{v,{\rm e}}}{\tau_{ei}} (T_{\rm e} - T_{\rm i}) \\ \frac{\partial}{\partial t}(\rho e_{\rm e}) + \nabla \cdot (\rho e_{\rm e} \boldsymbol{v}) + P_{\rm e} \nabla \cdot \boldsymbol{v} = \rho \frac{c_{v,{\rm e}}}{\tau_{ei}} (T_{\rm i} - T_{\rm e}) - \nabla \cdot \boldsymbol{q}_{\rm e} + Q_{\rm abs} - Q_{\rm emis} + Q_{\rm emis} \\ \frac{\partial}{\partial t} (\rho e_{\rm r}) + \nabla \cdot (\rho e_{\rm r} \boldsymbol{v}) + P_{\rm r} \nabla \cdot \boldsymbol{v} = \nabla \cdot \boldsymbol{q}_{\rm r} - Q_{\rm abs} + Q_{\rm emis} \end{cases}$$

Collimator material shows evidence of phase change during beam strikes

- Experiments indicate melting and evaporation, and re-solidification
- Phase modeling in FLASH requires extrinsic support
 - Set BDRY_VAR=+1.0 to fix cells as rigid

radiasoft

• **Set** BDRY VAR=-1.0 to permit full hydrodynamics

Modifications to permit intermediate phases

- Set BDRY_VAR=+0.5 to specify intermediate "pseudo-liquid" phase
 - Thermal conductivity modified in line with temperature/phase
 - Retains rigid body approximation (e.g. no advection)

"Coupled Simulations of Collimator Irradiation in Fourth Generation Light Sources"

on, and re-solidification upport

nics S

- 1.00	
- 0.75	
- 0.50	
- 0.25	
- 0.00	bdry
0.25	
0.50	
0.75	
)

Phase change necessitates improved transport properties (I)

Improvement of thermal conductivity via phase change labeling

- FLASH employs a Spitzer model for thermal/electrical/magnetic transport for plasmas
- Implemented a model for thermal conductivity in liquid copper and liquid aluminum

radiasoft

$$\begin{aligned} \kappa_{Cu}(T) &= \begin{cases} \kappa_{solid,Cu}(T), & T < T_{m,Cu} = 1357.77 \text{ K} \\ \kappa_{liquid,Cu}(T), & T_{m,Cu} = 1357.77 \text{ K} \leq T \leq T_{b,Cu} = 2835 \text{ K} \end{cases} \\ \kappa_{Al}(T) &= \begin{cases} \kappa_{solid,Al}(T), & T < T_{m,Al} = 933.47 \text{ K} \\ \kappa_{liquid,Al}(T), & T_{m,Al} = 933.47 \text{ K} \leq T \leq T_{b,Al} = 2743 \text{ H} \\ \kappa_{liquid,Al}(T), & T_{m,Al} = 933.47 \text{ K} \leq T \leq T_{b,Al} = 2743 \text{ H} \\ \kappa_{liquid,Al}(T) &= (w_0 + w_i + w_{i0})^{-1} \end{cases} \begin{cases} w_0 &= \frac{\rho_i(273)}{(RR^{n-1})L_0T} \\ w_i &= \frac{P_iT^{P_2}}{1 + P_1P_3T^{(P_2+P_4)}\exp(-(P_5/T)^{P_0})} + w_c(T) \\ w_i &= \frac{P_2T^{W_{10}}}{w_i + w_0} \\ w_i &= \frac{P_2T^{W_{10}}}{w_i + w_0} \\ &= a_3 \ln\left(\frac{T}{b_3}\right)\exp\left[-\left(\frac{\ln(T/c_1)}{d_3}\right)^2\right]. \end{aligned}$$

$$\begin{aligned} &= H_{\text{ust}, J, \text{ and Lankford, NBS IR 84-3007(1984) https://doi.org/10.6028/NBS.IR.84-3007} \end{cases} \end{cases}$$

"Coupled Simulations of Collimator Irradiation in Fourth Generation Light Sources"

Implemented a model for thermal conductivity which gives k as a function of T in solid copper and aluminum

Phase change necessitates improved transport properties (II)

Improvement of thermal conductivity via phase change labeling

- FLASH employs a Spitzer model for thermal/electrical/magnetic transport for plasmas
- Implemented a model for thermal conductivity in liquid copper and liquid aluminum

$$\kappa_{Cu}(T) = \begin{cases} \kappa_{solid,Cu}(T), & T < T_{m,Cu} = 1357.77 \text{ K} \\ \kappa_{liquid,Cu}(T), & T_{m,Cu} = 1357.77 \text{ K} \le T \le T_{b,Cu} = 2835 \text{ K} \end{cases} \\ \kappa_{Al}(T) = \begin{cases} \kappa_{solid,Al}(T), & T < T_{m,Al} = 933.47 \text{ K} \\ \kappa_{liquid,Al}(T), & T_{m,Al} = 933.47 \text{ K} \le T \le T_{b,Al} = 2743 \end{cases}$$

Implemented a model for thermal conductivity which gives k as a function of T in solid copper and aluminum

Coupled Simulations Indicate variation in response to bunch pattern

Coupled simulations with a copper collimator illustration variation in APS and APS-U response

- Larger APS beam features a higher current a more frequent bunch pattern
- APS-U beam features a lower current with significantly smaller extent and narrower loss profile

Proper coupling increases interaction length while reducing peak beam loss rates Multiple factors mitigate beam loss as a function time

- - Cumulative losses are 15% lower by 12th turn
- Reduced scattering limits peak beam loss and results in larger losses at high pass numbers
- APS-U conditions are subject to reduced peak but more prolong losses in both cases
 - The bunch patterns and dynamics under RF abort differ significantly between the two machines •

Melt conditions and subsequent advection reduce density and therefore mitigate scattering and deposition

Choice of collimator material affects performance

Moving from Copper to Aluminum can reduce structural damage

- Damage is largely a function of density, which directly correlates to dose
- Thermal conductivity and melting point matter too, but those vary much less than density
- Uncoupled simulation results indicate the strong influence of material choice

radiasoft

Copper Slice Density Profiles

Choice of collimator material affects performance

Moving from Copper to Aluminum can reduce structural damage

- Damage is largely a function of density, which directly correlates to dose
- Thermal conductivity and melting point matter too, but those vary much less than density
- Uncoupled simulation results indicate the strong influence of material choice

"Coupled Simulations of Collimator Irradiation in Fourth Generation Light Sources"

Aluminum Slice Density Profiles

Three-Dimensional modeling captures longitudinal collimator variation

• Collimator arc increases deposition and damage at midpoint, subject to scattering effects

user: seanriedel Mon Apr 22 20:21:12 2024

Fan-out kicker may mitigate damage to the collimator target

Experiments have studied damage mitigation via the use of a vertically deflecting fan-out kicker (FOK) that spreads the bunch train transversely across the target

- The FOK operates across individual bunches to spread them transversely and reduce incident power
- Each bunch strikes the collimator in different vertical positions, stratifying the per-turn dose
- Experiments indicate that the FOK is a powerful tool for damage mitigation
- Initial models have been implemented to capture the bunch separation and transverse spread
 - These simulations indicate qualitative agreement with the reduction in dose

Improving simulation coordination to support multi-code workflow (I)

Plan to leverage rsopt library to mediate simulations on distributed resources

- Creates and manages simulation jobs and workers to perform complex ensembles of simulations from templated inputs
- Leverages optimization libraries and/or custom procedures • to generate simulation parameters
- Easily transfer workflows from local machines onto HPC environments

Growing support for start-to-end simulation modalities

Multiple codes with I/O handoffs supported for some • common accelerator codes & Python scripting

Supported codes

- elegant*
- MAD-X*
- · OPAL*
- FLASH*
- Genesis*
- Python
- User supplied

• Execution methods

- serial
- parallel (MPI)
- Podman/Shifter (NERSC)

*File parsing supported

Simulation coordination to support multi-code workflow (II)

Example demonstration with a simple parameter scan

- Vary arbitrary parameters using mesh scan mode
 - Latin Hypercube Sampling in parameters supports arbitrary parametric variations with arbitrary sample number
- External files identified and copied to run directory during execution
 - Supports folders with recursive file structure (e.g. deposition)

Resulting file structure is recursive by worker/job

- Analysis scales to many cores/workers
- Multi-code modeling links different configurations together
 - Support for arbitrary executables across all applications
 - Pre-compiled executables can be adopted via `user' code approach

flash_scan.yml runrsoptscan.sh flash4 flash.par *.cn4 expt2020_sn08_time-varying_gauss runs/ └── worker1/ — flash.par (modified for sim0000) flash4 — *.cn4 mhd_ppm_llf_b972_t2743.* expt2020_sn08_time-varying_gauss

.

#SBATCH --output=test.out #SBATCH --time=01:00:00

module load intel intel-mpi intel-mkl

export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/soft/flash/hdf5/1.8.21/parallel/lib export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:/soft/flash/hypre/2.8.0b/lib

rsopt sample configuration flash_scan.yml


```
- flash:
        settings:
        parameters:
            sim rhoAmbient:
                min: 1.673e-6
                max: 6.695e-6
                start: 1.673e-6
               samples: 8
       setup:
            input_file: flash.par
            executable: flash4
            execution_type: parallel
            cores: 36
    - python:
        settings:
            macroparticle_count: 32_000
       parameters:
            paramater_a:
                min: 42.0
                max: 84.0
                start: 64.0
       setup:
            preprocess: ["process.py",
"create_warpxnpufile: run_warpx.py
            function: main
            execution_type: parallel
            cores: 128
options:
    run_dir: ./runs
    software: mesh_scan
        - h2_fill.cn4
        - "Bessel_temp_files/"
```


Conclusions & Next Steps

- Next generation light sources face machine protection challenges from high brightness beams Full beam aborts threaten destruction of collimators responsible from protecting critical insertion devices • Coupled workflow enables self-consistent simulations of beam and collimator interaction Combination of beam dynamics, particle-matter interaction, and material hydrodynamics • Existing models show promise in capturing basic responses under APS and APS-U conditions Models provide guidance on mitigation efforts via material choice and fast beam expansion

- Next Steps will enhance physics, numerics, and workflow capabilities
 - Extend intermediate phase conditions •
 - Include latent heat model and enable density and/or EOS modulations for intermediate phases Implement an immersed boundary method (IBM) model to better track interfaces between phases
 - Improve boundary conditions for mixed phase interactions Explore magnetic field effects on beam and material evolution
- - - Consider wakefield effects on beam propagation and subsequent thermal transport
 - *Continue to improve run coordination* \bullet
 - Improve diagnostic outputs and develop composite metrics for simulation guidance and optimizaiton
 - *Consider synchrotron radiation effects on APS-U inline absorbers*
 - Examine downstream synchrotron radiation effects resulting from beam interactions

