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Outline
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• Differentiable space-charge modeling using TPSA

• Space-charge simulation using a quantum Schrodinger approach

• Future work

See Prof. Yue Hao’s talk on Friday for differentiable simulation with a different auto differentiation package



Truncated Power Series Algebra (TPSA)
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• TPSA has been used to calculate high-order transfer maps in accelerator 

beam dynamics.

• The same library can be used to calculate derivatives w.r.t. design 

parameters.

• TPSA changes the derivatives of a function into a function of DA vector 

variables.



Solution of Hamilton Equation in Transfer Map
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➢ f can be a very complicated function

➢ Mi is the ith order transfer map, and is related to 

the ith derivative of function f
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Consider a one-dimensional Taylor approximation:

To find the derivative, i.e. Taylor map, one can approximate the derivative numerically:

loss of accuracy

How to attain Mi effectively?



Introduction to Truncated Power Series Algebra (TPSA)
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A point x in number space maps to 

another point y=f(x) in number space 

A point Dx in DA vector space maps to 

another point Dfx in DA vector space 
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Use symbolic calculation from package like Mathematica:

For example:

• very complicated for high order derivatives

• even impossible for some function without closed form (e.g. simulation)

Define a N-dimension function space with bases:

The derivative up to Nth order can be regarded as a point in that space and 

represented as a vector:

For example, a constant c, its representation as  

a variable x as, 



Basic Operations for the TPSA vector
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➢ A complicated function can be broken down as the operations of 

addition and multiplication

❖ Rule of addition:
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❖ Rule of multiplication:
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Basic Operations for the TPSA vector

❖ Rule of multiplication:
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➢ Operation of TPSA vector in a complicated function can be calculated using 

the rules of addition and multiplication



An Example of Calculation of Derivatives Using TPSA
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For example, inverse of TPSA vector 

Another example: evaluate f’(1) and f’’(1) for the following function:

Analytical function method:

TPSA method:



Special Functions of TPSA Vector
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▪ How about special functions such as sin(X), exp(X), log(X), etc

➢ Answer: use Taylor expansion:
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leading m zeros

➢ This means [0,x1,x2,x3,…xN] raised to (N+1)th power is exactly zero in TPSA.



Some Special Functions of TPSA Vector
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Differentiable Simulation Enables Sensitivity Study and Fast 

Design Optimization
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• The differentiable simulation is a simulation that can automatically  

compute derivatives of the simulation result with respect to its input  

parameters.

• Differentiable simulation can be used to study:

-- sensitivity of target physical quantities w.r.t. design parameters

-- included in fast  gradient-based optimizer 

Ref: PIP-II CDR report 2017.



Differentiable Space-Charge Simulation through a FODO 

Lattice
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J. Qiang, Differentiable self-consistent space-charge simulation for accelerator design, PRAB 26, 024601, 2023

H = H1+H2

A formal single step solution
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Self-Consistent Space-Charge Transfer Map (1)
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Symplectic Gridless Particle Model

M2

w is the particle 

charge weight



Differentiable Space-Charge Simulation through a FODO  

Lattice
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Derivatives of the X and Y Emittances w.r.t. 7 Lattice Parameters  

from 1 Differentiable Simulation and from Finite Difference  

Approximation with Multiple Simulations Shows Good Agreement
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Derivatives of the X and Y Emittances w.r.t. 8 Beam  

Parameters from 1 Differentiable Simulation

• Final emittances are more sensitive to initial beam distribution

parameters.
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Matching Including Space-Charge Effects Using the Differentiable 

Simulation with Conjugate Gradient Optimizer
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• 4 control knobs in the matching lattice section

periodic FODO latticematching lattice



Differentiable Simulation Enables Gradient Based 

Optimization (Conjugate Gradient Method) 
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• Transverse RMS size evolution without the quadrupole matching (left) 

and with the quadrupole matching including the space-charge effects 

(right) through the FODO lattice.



Modeling of Space-Charge Effects Involves Solution of 6D Vlasov-

Poisson Equations

 =  f (r, p, t)d 3 p
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Conventional Solution Methods:

-- Using macroparticle in particle-in-cell method

-- Direct numerical solution of 6D partial differential equation



Simulation of Space-Charge Effects Using a Quantum Approach

Involves Lower Dimensions and Enables Potential New Platform

• Reduce the computational domain from 6/4 dimensional classical phase

space to 3/2 dimensional spatial space

• Open the possibility to explore the beam physics simulation on quantum  

computers

S. McArdle et al., “Quantum computational chemistry”, arXiv:1808.10402.

J. Qiang, “Simulation of space-charge effects using a quantum Schrodinger approach,” Phys. Rev. Accel. Beams 25, 034602 (2022).
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Husimi Representation of Phase Space Distribution
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Schrodinger Equation of a Coasting Beam

Rewrite the z-dependent Hamiltonian as t-dependent Hamiltonian:
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Replace the energy and momentum with corresponding operators:

Start with a z-dependent Hamiltonian of a particle in accelerator:



Numerical Solution of the Schrodinger Equation (1)

Lie-Trotter Splitting-Operator Method for Time Integration:
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Spectral Method with Sine Function Representation in Spatial Dom.



Numerical Solution of the Schrodinger Equation (2)

Wave Function Evolution for a Single Step:

25



Numerical Solution of Poisson’s Equation for Space-Charge  

Effects (1)

Spectral Method with Sine Function Representation:
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Initial Condition and Diagnostics

Initial condition of wave function:

Beam properties from wave function:
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Test Case 1: No Space-Charge Effects (1)

RMS Size Evolution
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RMS Divergence Evolution

• Good agreement between the PIC simulation and the quantum

Schrodinger simulation.



Test Case 1: No Space-Charge Effects (2)

Twiss Parameter Alpha Evolution RMS Emittance Evolution
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• Both methods agree with each other well and show no emittance

growth without the space-charge effects.



Case 2: with Space-Charge and Initial Mismatched Beam (1)

RMS Size Evolution
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RMS Divergence Evolution

• Both the PIC and the quantum Schrodinger methods show initial  

beam size growth due to mismatched space-charge effects.



Case 2: with Space-Charge and Initial Mismatched Beam (2)

• Both methods show large emittance growth due the mismatched  

space-charge effects.
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Twiss Parameter Alpha Evolution RMS Emittance Evolution



Future Work

• Improve computational speed in differentiable space-charge 

modeling

• Extend the quantum Schrodinger approach to 3D space-charge

• Explore potential quantum computing application


