Weak-strong simulations of electron cloud effects from the Inner Triplets of the Large Hadron Collider

Konstantinos Paraschou, Giovanni Iadarola, Lotta Mether

CERN, Geneva, Switzerland

Many thanks to: G. Rumolo, H. Bartosik, Y. Papaphilippou, F. Van der Veken

14th International Computational Accelerator Physics Conference 2nd October 2024

Outline

- 1. Introduction and motivation
- 2. Description of simulation method
- 3. Simulation results:
 - a) Validation
 - b) Frequency map analysis
 - c) Dynamic aperture

Outline

- 1. Introduction and motivation
- 2. Description of simulation method
- 3. Simulation results:
 - a) Validation
 - b) Frequency map analysis
 - c) Dynamic aperture

Electron clouds

- Electrons are introduced into the chamber (residual gas ionization / synchr. rad. + photoelectric effect)
- 2. Electrons are accelerated by passing bunches and impact on beam chamber, emitting more electrons.

If conditions allow, electrons multiply exponentially!

Motivation

Several configurations were tested. All observations point to the e-cloud forming in the Inner Triplet quadrupoles. (Final focusing quadrupoles)

Good news: HL-LHC Inner Triplet will have a-C coating to suppress e-cloud formation.

Can we simulate these losses?

(By looking for a reduction of dynamic aperture in particle tracking simulations)

Slow proton beam loss comes from:

- Luminosity **burn-off** (inelastic p-p collisions).
- Additional losses (Beam dynamics).

Luminosity (ATLAS + CMS) $\left(-\frac{dI}{dt}\right)_{\text{other}} = \left(-\frac{dI}{dt}\right)_{\text{total}} - \sigma_{\text{inel.}} \cdot \mathcal{L}$ Extel loss rate (East Deem Current Transformer)

Total loss rate (Fast Beam Current Transformer)

The Inner Triplets are complex and in $\approx 30~m$:

- Two beams present arriving at different times at each slice (w.r.t. to each other).
- Rapidly changing closed orbit.
- Rapidly changing betatron functions.

Many slices are necessary.

The computational problem

- E-cloud strongly depends on delay between two beams:
 - Less e-cloud at locations of beam-beam long-range interactions
 - Less e-cloud in drift spaces.
- 384 slices per triplet \rightarrow 4 triplets, 1536 slices.
- ≈ 4 GB per slice $\rightarrow \approx 6$ TB

Outline

- 1. Introduction and motivation
- 2. Description of simulation method
- 3. Simulation results:
 - a) Validation
 - b) Frequency map analysis
 - c) Dynamic aperture

Strategy

An e-cloud slice can be described by a scalar potential $\phi(x, y, \zeta)$ in a thin-lens formalism.

- 1. Transport slices to same location.
- 2. Slices commute (only depend on x, y, ζ). They can be summed.

[G. Iadarola, CERN-ACC-NOTE-2019-0033]

$$\begin{array}{l} x, y, \zeta \mapsto x, y, \zeta \\ p_x \mapsto p_x - \frac{qL}{\beta_0 P_0 c} \frac{\partial \phi}{\partial x}(x, y, \zeta) \\ p_y \mapsto p_y - \frac{qL}{\beta_0 P_0 c} \frac{\partial \phi}{\partial y}(x, y, \zeta) \\ p_\zeta \mapsto p_\zeta - \frac{qL}{\beta_0 P_0 c} \frac{\partial \phi}{\partial \zeta}(x, y, \zeta) \end{array} - e^{-:\phi:} \end{array}$$

 ζ refers to $s - \beta_0 ct$, the longitudinal distance from the reference particle

Approximations

(1st approximation):

Courant-Snyder parameterization

$$e^{:f_{ij}:}x = \sqrt{\frac{\beta_j}{\beta_i}} \left(\cos \mu_{ij} + \alpha_i \sin \mu_{ij}\right) (x - x_i) + \sqrt{\beta_i \beta_j} \sin \mu_{ij} \left(p_x - p_{x,i}\right) + x_j$$

(2nd approximation):

Constant phase advance $\mu_{ij} \approx 0$

(3rd approximation):

No longitudinal motion

$$e^{:f_{ij}:}\zeta = \zeta$$

Effective (lumped) e-cloud:

$$\Phi(x, y, \zeta) = \sum_{i} \phi_{i} \left(\sqrt{\frac{\beta_{x,i}}{\beta_{x,k}}} \left(x - x_{k} \right) + x_{i}, \sqrt{\frac{\beta_{y,i}}{\beta_{y,k}}} \left(y - y_{k} \right) + y_{i}, \zeta \right)$$

- Combines all slices into one scalar potential.
- Equation can be evaluated on a 3D grid, and treated as a single slice.

$$e^{-:\Phi:}$$

 $e^{:f_{ik}:}$

Effective e-cloud

-25

-15

-10

y [mm]

-5

0

$$\Phi(x, y, \zeta) = \sum_{i} \phi_{i} \left(\sqrt{\frac{\beta_{x,i}}{\beta_{x,k}}} \left(x - x_{k} \right) + x_{i}, \sqrt{\frac{\beta_{y,i}}{\beta_{y,k}}} \left(y - y_{k} \right) + y_{i}, \zeta \right)$$

- Non-linear time-dependent forces.
- Forces become exceedingly nonlinear at large amplitudes of oscillation.

Weak-strong simulations:

- Assume e-cloud is in a steady state.
- Map is constructed once in a "pre-processing stage", and re-used during particle tracking.

Simulation flow

Tracking time for 1 000 000 turns, 20 000 particles in A100 GPU:

LHC lattice :	5.7 hours
LHC lattice + beam-beam :	6.1 hours
LHC lattice + beam-beam + e-cloud :	7.0 hours

Outline

- 1. Introduction and motivation
- 2. Description of simulation method
- 3. Simulation results:
 - a) Validation
 - b) Frequency map analysis
 - c) Dynamic aperture

- Focus on Q3 quadrupole (right of interaction point 1): Q3R1.
- 64 slices, can fit in 1TB RAM computers.
- Dynamic aperture simulations to test previous equation.
- Good agreement.

Frequency Map Analysis

- Tracking over 100 000 turns, tune evaluated over:
 - First 50 000 turns,
 - Last 50 000 turns.

Difference in tune \rightarrow tune is not constant and so trajectory is chaotic.

- E-cloud doesn't cause a significant tune-shift (compared to beam-beam effects)
- Visible effect of e-cloud \rightarrow increase of non-linearities.

Dynamic aperture

Dynamic aperture over 1 000 000 turns, including the e-clouds in the 4 inner triplets (left and right of i.p. 1 and 5).

- E-cloud in triplet scales favorably with higher intensity.
- E-cloud effects can become as strong as beam-beam effects at low bunch intensities.
- E-clouds are worse with larger Secondary Emission Yield (SEY).
- SEY < 1.10 will be enough to mitigate the effect of e-cloud in the triplets.

Dynamic aperture Tune scan

Dynamic aperture over 1 000 000 turns, including the e-clouds in the 4 inner triplets (left and right of i.p. 1 and 5). Simulations varying the working point.

- E-cloud effects cause a reduction of dynamic aperture for all tunes.
- The optimal working point remains similar.

Simulation parameters:

Bunch intensity = $1.2 \ 10^{11} \text{ p/b}$ SEY = 1.30

Conclusions

- Region around Inner Triplets is complicated.
- Electron cloud effects from the inner triplets in the LHC can be simulated.
- Method was developed and benchmarked to be able to simulate effects in a sustainable manner, by reducing memory consumption.
- Frequency Map Analysis:
 - 1. Increased chaoticity that goes deeper into the distribution of particles.
 - 2. No significant tune-shift effects
- Dynamic aperture studies:
 - 1. Effect that can be at least as strong as beam-beam effects at low bunch intensities.
 - 2. Cannot be mitigated with a change in working point.
- Strategy of HL-LHC upgrade project to coat the new inner triplets with amorphous carbon remains a good solution.

Thank you for your attention! Konstantinos Paraschou

Backup slides

Simulation parameters

Beam parameters:

Bunch intensity = $1.2 \ 10^{11} \text{ p/b}$ norm. emittance = $2 \ \mu\text{m}$ r.m.s. bunch length = $0.09 \ \text{m}$ Energy = $6.8 \ \text{TeV}$

Surface parameters: SEY = 1.30

2023 Optics with $\beta^* = 30$ cm Half-crossing angle : 160 µrad

Working point: Qx = 62.31 Qy = 60.32Non-linearities to mitigate coherent instabilities: Q' = 20 $I_MO = 300 \text{ A}$ Residual uncorrected global linear coupling: $Re[C^-] = 0.001$

Lie tranformations

Lie transformations are operators that describe the solution of Hamiltonian systems: $z(L) = e^{-:LH:}z(0)$

where
$$:H: f = [H, f] = \sum_{i} \left(\frac{\partial H}{\partial q_i} \frac{\partial f}{\partial p_i} - \frac{\partial f}{\partial q_i} \frac{\partial H}{\partial p_i} \right)$$
 is the Poisson bracket.

Lie transformations

- ϕ_j : Hamiltonian of e-cloud interaction for one slice at location j
- f_{ij} : Hamiltonian of transport between location *i* and *j*
- f_{jk} : Hamiltonian of transport between location j and k

Step 1: use property
$$e^{:-f:}e^{:g:}e^{:f:} = \exp(:e^{:-f:}g:)$$

$$e^{:f_{ij}:}e^{:\phi_j:}e^{:f_{jk}:} = e^{:f_{ij}:}e^{:f_{jk}:}e^{-:f_{jk}:}e^{:\phi_j:}e^{:f_{jk}:}$$
$$= e^{:f_{ij}:}e^{:f_{jk}:}exp\left(:e^{:-f_{jk}:}\phi_j:\right)$$

Lie transformations

$$i \qquad j \qquad k \qquad \cdot \text{ We have transported the } e-cloud slice (without approximation).} \\ \cdot \text{ We need to simplify} \qquad exp\left(:e^{:-f_{jk}:}\phi_j:\right) \qquad \cdot \text{ We need to simplify} \\ exp\left(:e^{:-f_{jk}:}\phi_j:\right) \qquad \cdot \text{ Step 2: use property } e^{:f:}g(x) = g(e^{:f:}x) \qquad \quad \phi_j = \phi_j(x, y, \zeta) \\ e^{:-f_{jk}:}\phi_j(x, y, \zeta) = \phi_j(e^{:-f_{jk}:}x, e^{:-f_{jk}:}y, e^{:-f_{jk}:}\zeta)$$

Lie transformations – Courant-Snyder parameterization

$$e^{:-f_{jk}:}\phi_j(x, y, \zeta) = \phi_j(e^{:-f_{jk}:}x, e^{:-f_{jk}:}y, e^{:-f_{jk}:}\zeta)$$

Courant-Snyder parameterization (first approximation):

$$e^{:f_{ij}:x} = \sqrt{\frac{\beta_j}{\beta_i}} \left(\cos \mu_{ij} + \alpha_i \sin \mu_{ij}\right) (x - x_i) + \sqrt{\beta_i \beta_j} \sin \mu_{ij} \left(p_x - p_{x,i}\right) + x_j$$

Constant phase advance (second approximation):

$$\mu_{ij} \approx 0$$

Transformation becomes: $e^{:f_{ij}:x} = \sqrt{\frac{\beta_j}{\beta_i}} (x - x_i) + x_j$

Third approximation: longitudinal coordinate doesn't change.

$$e^{:f_{ij}:}\zeta = \zeta$$

Effective e-cloud

$$e^{:-f_{jk}:}\phi_{j}(x, y, \zeta) = \phi_{j}(e^{:-f_{jk}:}x, e^{:-f_{jk}:}y, e^{:-f_{jk}:}\zeta)$$
$$e^{:-f_{jk}:}\phi_{j} = \phi_{j}\left(\sqrt{\frac{\beta_{x,j}}{\beta_{x,k}}}(x - x_{k}) + x_{j}, \sqrt{\frac{\beta_{y,j}}{\beta_{y,k}}}(y - y_{k}) + y_{j}, \zeta\right)$$

Equation is manageable in this form.

 ϕ_j is defined on a 3D grid, we just need to reinterpolate based on the above equation.

$$\Phi(x, y, \zeta) = \sum_{i} \phi_{i} \left(\sqrt{\frac{\beta_{x,i}}{\beta_{x,k}}} \left(x - x_{k} \right) + x_{i}, \sqrt{\frac{\beta_{y,i}}{\beta_{y,k}}} \left(y - y_{k} \right) + y_{i}, \zeta \right)$$

- 1536 simulations each to:
- Do electron cloud buildup,
- Detailed bunch passage "pinch".
- Combine on-the-fly to same 4 files.