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Transfer Map Method

• The transfer mapM is the flow of the system ODE.

 =M( )

where  and  are the initial and the final condition,  is system para-
meters.



Transfer Map Method and Differential Algebras

• The transfer mapM is the flow of the system ODE.

 =M( )

where  and  are the initial and the final condition,  is system para-
meters.

• For a repetitive system, only one cell transfer map has to be computed.
Thus, it is much faster than ray tracing codes (i.e. tracing each individual
particle through the system).

• The Differential Algebraic method allows a very efficient computation of
high order Taylor transfer maps.

• The Normal Form method can be used for analysis of nonlinear behavior.
Differential Algebras (DA)

• it works to arbitrary order, and can keep system parameters in maps.
• very transparent algorithms; effort independent of computation order.
The code COSY Infinity has many tools and algorithms necessary.



High-Order Contributions
• Typically decreases as the order gets higher

• But, sometimes it is not the case
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High-Order Contributions
• Typically decreases as the order gets higher

• But, sometimes it is not the case

• For example, the Muon g-2 Ring has large 9th order contributions



high voltage insulator. It was therefore very
important to make those electrodes (Q1 full and
Q1 half) as thin as possible and yet sturdy enough
so that they do not buckle.

4.1.5. Leads

The typical leads arrangement for each set of
four electrodes are shown in Fig. 8. The leads
are 3 mm O.D. aluminum tube with 0:5 mm

Fig. 5. The cross section of the quadrupole plates (‘‘electrodes’’) and NMR trolley rails (‘‘ground electrodes’’). The top-bottom as well

as the left-right high voltage support insulators are also shown.

Fig. 6. A photograph taken from the end of a vacuum chamber housing the quadrupole plates; the ring center is on the left. The

distance between quadrupole plates at equal potential is 10 cm. The bottom left and the top right rails are where the cable NMR trolley

rides when measuring the magnetic field. The other two rails were used to keep the symmetry in the quadrupole region. The ruler units

are in inches.
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OPERA-

UNITS
Length          : cm    
Flux density    : C m  
Field strength  : V m  
Potential       : V       
Conductivity    : S m  
Source density  : C cm
Power           : W      
Force           : N       
Energy          : J        
Mass            : kg      

PROBLEM DATA
quad_no_offset.st
Linear elements
XY symmetry
Scalar potential
Electric fields
Static solution
Scale factor = 1.0
  6084  elements
  3155  nodes
    52  regions
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Fig. 18. The plotted parameter #POT3 is the regular potential (plotted in Fig. 17) minus the quadrupole potential and is defined as

#POT3 ¼ POT� ðPOT2 cm=22Þ*ðx
2 � y2Þ: The dominance of the 20 pole, b10=b2 ¼ 1:9% on the circle with r ¼ 4:5 cm; is clearly visible.

Table 5

The potential multipoles at r ¼ 4:5 cm; the edge of the muon
storage region, for negative muon storage and 724 kV on the

plates

Order of multipole Cosine term

(Normal) [V]

Sine term

(skewed) [V]

1 0.0 ð�12Þ 0.0

2 20177.8 0.1

3 0.0 ð�28Þ 0.0

4 33.0 ð�153Þ 0.1

5 0.0 ð�10Þ 0.0 ð�8Þ
6 �45:9 ð�26Þ 0.1

7 0.0 0.0

8 �5:5 �0:2
9 0.0 0.0

10 �391:3 0.1

11 0.0 0.0

12 �6:5 ð18Þ 0.0

13 0.0 0.0

14 52.3 �0:1

The placement of the plates is assumed ideal and the distance of

the plates from the vacuum chamber walls is equal for all plates

as shown in Fig. 17. In parentheses we show the multipoles

generated due to the scalloped vacuum chambers violating the

four fold symmetry.

Table 6

The potential multipoles at r ¼ 4:5 cm, the edge of the muon
storage region, for negative muon storage and 724 kV on the

plates

Order of multipole Cosine term

(normal) [V]

Sine term

(skewed) [V]

1 405 345

2 19875 �75
3 173 �120
4 �190 20

5 �10 �8
6 �35 30

7 �50 35

8 20 10

9 �50 �30
10 �391.3 0

11 �15 10

12 20 4

13 4 2

14 50 �2

The placement of the plates is assumed to be the worst possible

(i.e. 70:75 mm on the side plates, and 70:5 mm on the top

ones). The multipoles shown are the highest values found when

different combinations of non ideal quad plate positioning is

assumed.
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High-Order Contributions
• Typically decreases as the order gets higher

• But, sometimes it is not the case

• For example, the Muon g-2 Ring has large 9th order contributions
- due to the 20th pole components in the Electrostatic Quads



Related Talks
• Nonlinear Beam Dynamics, DA (Differential Algebras), COSY INFINITY

Sat 05/10, 9:30am, Main Auditorium, Martin Berz
“Nonlinear beam dynamics tools for 
field treatment, symplectic tracking and spin in COSY INFINITY”

• Muon g-2 Experiment, Beam Dynamics, Simulations
- The Storage Ring

Fri 04/10, 9:00am, Main Auditorium, Eremey Valetov
“Beam Dynamics of the Muon g-2 Experiment”

- The Beam Delivery System
Thu 03/10, 4:50pm, Main Auditorium, Eremey Valetov
“New Muon Campus Simulations for 
the Muon g-2 Experiment at Fermilab”



High-Order Contributions
• Typically decreases as the order gets higher

• But, sometimes it is not the case

• For example, the Muon g-2 Ring has large 9th order contributions
- due to the 20th pole components in the Electrostatic Quads

• How to catch known/unknown effects from the higher-order contributions
- Use rigorous computation methods

* Interval Methods?
* DA related methods?



Interval Arithmetic

Amethod to perform guaranteed calculations on computer by pre-
senting all numbers by intervals.

[ ] + [ ] = [+   + ]

[ ]− [ ] = [−  − ]

[ ] · [ ] = [min(   )max(   )]
[ ][ ] = [min(   )max(   )]

Not a group because [ ]− [ ] 6= [0 0] unless  =   = .
In particular,

[ ]− [ ] = [−  − ]

[ ][ ] = [min(1  )max(1  )]

Thus, operations lead to over estimation, which can become large
with time to blow up.



Verified ODE Integrations
Using the interval method, typical issues in general are

• overestimation
• the dependency problem
• the dimensionality curse
When geometric transformations of sets are involved,
such as ODE integrations, there arises an additional issue

• the wrapping effect
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Verified ODE Integrations
Using the interval method, typical issues in general are

• overestimation
• the dependency problem
• the dimensionality curse
When geometric transformations of sets are involved,
such as ODE integrations, there arises an additional issue

• the wrapping effect

How to handle the wrapping effect in

• the interval method
• the Taylor model method;  = ( ) =  +  where

()−  (− 0) ∈  ∀ ∈  0 ∈ 



Taylor models

For f : D ⊂ Rv → R that is (n+1) times continuously partially differentiable,
P (x − x0): the n-th order Taylor polynomial of f around x0 ∈ D
e: a small remainder bounding set of the deviation of P from f

f(x) − P (x − x0) ∈ e, ∀x ∈ D where x0 ∈ D.

We call the combination of P and e as a Taylor model.

T = (P, e) = P + e.

T depends on the order n, the domain D, and the expansion point x0.



Taylor Model Arithmetic

Define Taylor model addition, multiplication for T1 = (P1, e1), T2 = (P2, e2)
with the same conditions {n, D, x0}.

T1 + T2 = (P1 + P2, e1 + e2),
T1 · T2 = (P1·2, e1·2).

P1·2: the part of the polynomial P1 · P2 up to the order n.
e1·2 = B(P>n) + B(P1) · e2 + B(P2) · e1 + e1 · e2.
P>n: the higher order part from (n + 1) to 2n.
B(P ): an enclosure bound of P over D.
Operations on sets ei follow set theoretical operations and outward rounding.



Taylor Model Arithmetic – and Intrinsic Functions

Define Taylor model addition, multiplication for T1 = (P1, e1), T2 = (P2, e2)
with the same conditions {n, D, x0}.

T1 + T2 = (P1 + P2, e1 + e2),
T1 · T2 = (P1·2, e1·2).

P1·2: the part of the polynomial P1 · P2 up to the order n.
e1·2 = B(P>n) + B(P1) · e2 + B(P2) · e1 + e1 · e2.
P>n: the higher order part from (n + 1) to 2n.
B(P ): an enclosure bound of P over D.
Operations on sets ei follow set theoretical operations and outward rounding.

Intrinsic functions for Taylor models can be defined by performing various
manipulations using these. The particularly nice is ∂−1

i , antiderivation, being
a Taylor model intrinsic function; because obtaining the integral with respect
to variable xi of P is straightforward, so is an integral of a Taylor model.



ODE Integration with Taylor Models
Idea: retain full dependence on initial conditions as Taylor model
(Non-verified version: big breakthrough in particle optics and beam physics,
1984 - allows to calculate "aberrations" to any order, from earlier order
three)

1. Different from other validated methods, the approach is single step -
no need for a separate coarse enclosure and subsequent verification step

2. Error due to time stepping is O(nt + 1)

3. Error due to initial variables is O(nv + 1), not O(2) as in other
methods

4. By choosing nt and nv appropriately, the error due to finite domain and
time stepping can be made arbitrarily small.

5. Overall, never leave the TM represenation until possibly the very end.
Doing so may remove higher order dependence.



Taylor Models for the Flow
Goal: Determine a Taylor model, consisting of a Taylor Polynomial and
an interval bound for the remainder, for the flow of the differential equation

d

dt
�r(t) = �F (�r(t), t)

where �F is sufficiently differentiable. The Remainder Bound should be fully
rigorous for all initial conditions �r0 and times t that satisfy

�r0 ∈ [�r01, �r02] = �B

t ∈ [t0, t1].
In particular, �r0 itself may be a Taylor model, as long as its range is known
to lie in �B.



The Use of Schauder’s Theorem
Re-write differential equation as integral equation

�r(t) = �r0 +

Z t

t0

�F (�r(t0), t0) dt0.

Now introduce the operator

A : �C0[t0, t1]→ �C0[t0, t1]

on space of continuous functions via

A
³
�f
´
(t) = �r0 +

Z t

t0

�F
³
�f(t0), t0

´
dt0.

Then the solution of ODE is transformed to a fixed-point problem on space
of continuous functions

�r = A(�r).

Theorem (Schauder): Let A be a continuous operator on the Banach
Space X. Let M ⊂ X be compact and convex, and let A(M) ⊂ M. Then
A has a fixed point in M, i.e. there is an �r ∈M such that A(�r) = �r.



The Polynomial of the Self-Including Set
Attempt sets M∗ of the form

M∗ =M�P ∗+�I∗ where
�P ∗ =Mn(�r0, t),

the n-th order Taylor expansion of the flow of the ODE. It is to be expected
that �I∗ can be chosen smaller and smaller as order n of �P ∗ increases.
This requires knowledge of nth order flowMn(�r0, t), including time de-
pendence. It can be obtained by iterating in polynomial arithmetic, or
Taylor models without treatment of a remainder. To this end, one chooses
an initial function M(0)

n (�r, t) = I, where I is the identity function, and
then iteratively determines

M(k+1)
n =n A(M(k)

n ).

This process converges to the exact resultMn in exactly n steps.



The Volterra Equation
Describe dynamics of two conflicting populations

dx1
dt
= 2x1(1− x2),

dx2
dt
= −x2(1− x1)

Interested in initial condition

x01 ∈ 1 + [−0.05, 0.05], x02 ∈ 3 + [−0.05, 0.05] at t = 0.

Satisfies constraint condition

C(x1, x2) = x1x
2
2e
−x1−2x2 = Constant



Trajectories of the Volterra Equations

The solutions have to satisfy the constraint

C(x1, x2) = x1x
2
2e

−x1−2x2 = constant,

so the trajectories follow the contour lines of C(x1, x2).

xy^2*exp(-x-2y)
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Step Size Control
Step size control to maintain approximate error " in each step.
Based on a suite of tests:

1. Utilize the Reference Orbit. Extrapolate the size of coe¢ -
cients for estimate of remainder error, scale so that it reaches
and get �t1. Goes back to Moore in 1960s. This is one of
conveniences when using Taylor integrators.

2. Utilize theFlow. Compute�ow time stepwith�t1:Extrapolate
the contributions of each order of �ow for estimate of remainder
error to get update �t2.

3. Utilize a Correction factor c to account for overestimation
in TM arithmetic as c = n+1

p
jRj=": Largely a measure of com-

plexity of ODE. Dynamically update the correction factor.

4. Perform veri�cation attempt for �t3 = c ��t2



Dynamic Domain Decomposition
For extended domains, this is natural equivalent to step size
control. Similarity to what’s done in global optimization.
1. Evaluate ODE for ∆t = 0 for current flow.

2. If resulting remainder boundR greater than ε, split the domain
along variable leading to longest axis.

3. Absorb R in the TM polynomial part using the error parame-
trization method. If it fails, split the domain along variable
leading to largest x dependence of the error.

4. Put one half of the box on stack for future work.
Things to consider:
• Utilize "First-in-last-out" stack; minimizes stack length. Spe-
cial adjustments for stack management in a parallel environ-
ment, including load balancing.

• Outlook: also dynamic order control for dependence on initial
conditions



Error Parametrization of Taylor models
Motivation: Is it possible to absorb the remainder error bound
intervals of Taylor models into the polynomial parts using addi-
tional parameters?

Phrase the question as the following problem:

1. Have Taylor models with 0 remainder error interval, which de-
pend on the independent variables �x and the parameters �α.

�T0 = �P0(�x, �α) +
−−→
[0, 0].

2. Perform Taylor model arithmetic on �T0, namely �F (�T0)

�F (�T0) = �P (�x, �α) + �IF , where �IF 6=
−−→
[0, 0].

3. Try to absorb �IF into the polynomial part that depends on �α

�P (�x, �α) + �IF ⊆ �P 0(�x, �α) +
−−→
[0, 0]. (A)
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The Duffing Equation
The equation describes a damped and driven oscillator.
Exhibits sensitive dependence on initial conditions and chaoticity.

̈ + ̇ +  + 3 =  cos()

Example: Study

̇ = 

̇ = −  − 3 +  cos()

with
 = 025  = 03

for
 ∈ [0 ] ( ) ∈ [−2 2]× [−2 2]
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Rigorous Integrations of the Lorenz System

Rigorous flow integrations of large ranges of initial con-
ditions have been computed using Taylor model based
ODE integrators, particularly by COSY-VI version 3.

Example: Flow computations of the standard Lorenz
equations for an area of initial condition

(  )|0 = ([−40 40] [−50 50] [−25 75])
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Summary
• Transfer Map Method and Differential Algebras (DA)
• Rigorous Computation Methods

Interval Methods
Taylor Models (TM), and comparison

• Verified ODE Integrations
Things to care: overestimation, dependency, wrapping effect
Taylor Model based ODE Integrations
- Mathematical backbones
- Various enhancement methods

- many methods possible with the DA/TM framework!
- Examples:  Volterra (contour trajectories)

Lorenz, Duffing (chaotic systems)
• Work in progress to improve the performances

Higher precision Taylor Model computations
Enhancements for the ODE integrations and more




