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1.   Introduction and Motivation 



1.1  Why is it interesting to study η and η’physics? 

•  Quantum numbers IG JPC = 0+ 0−+ 

–  C, P eigenstates, all additive quantum numbers are zero  
–  flavour-conserving laboratory for symmetry tests  

  
•  η: pseudo-Goldstone boson,                         

 
All decay modes forbidden at leading order by symmetries (C, P, 
angular momentum, isospin/G-parity. . . ) 

 
•  η’: not a Goldstone boson due to U(1)A anomaly 
 
 
 
 

•  Theoretical methods: 
–   (large-Nc) chiral perturbation theory, RChPT 
–  dispersion relations to resum final state interactions 
–  Vector-meson dominance  
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  Mη = 547.862(17) MeV , Γη = 1.31 keV 

  Mη ' = 957.78(6) MeV
Γη’ = 196 keV 



1.1  Why is it interesting to study η and η’physics? 

•  In the study of η and η’physics, large amount of data have been 
collected: 
 

 CBall, WASA, KLOE & KLOEII, BESIII, A2@MAMI, CLAS,     
            GlueX 
 
 

      More to come: JEF, REDTOP (Elam et al’22), LHCb?, JLab@22GeV 
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1.2  Experimental Facilities for studying η and  η’

•  S 
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 Why is it interesting to study η and η’physics? 

•  In the study of η and η’physics, large amount of data have been 
collected: 
 

 CBall, WASA, KLOE & KLOEII, BESIII, A2@MAMI, CLAS,     
            GlueX 
 
 

      More to come: JEF, REDTOP (Elam et al’22), LHCb?, JLab@22GeV 
 
•  Unique opportunity:  

–  Test chiral dynamics at low energy 
–  Extract fundamental parameters of the Standard Model:  

ex: light quark masses 
–  Study of fundamental symmetries: P & CP and C & CP violation 
–  Looking for beyond Standard Model Physics         Dark Sector 
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1.3  Study of η and  η’ physics  
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PDG’18 
Gan, Kubis, E.P., Tulin  

in progress 

  Mη = 547.862(17) MeV

Rich physics program 
at h,h’ factories

Standard Model highlights
• Theory input for light-by-light 

scattering for (g-2)m
• Extraction of light quark masses
• QCD scalar dynamics 

Fundamental symmetry tests
• P,CP violation
• C,CP violation

[Kobzarev & Okun (1964), Prentki & 
Veltman (1965), Lee (1965), Lee & 
Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)
• Vector bosons
• Scalars
• Pseudoscalars (ALPs)

(Plus other channels that have 
not been searched for to date) Gan, Kubis, Passemar, ST

[arxiv:2007.00664]

Gan, Kubis, E. P., 
Tulin’22 
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1.3  Analytical methods for light quark spectroscopy 

•  In the study of hadron spectroscopy, large amount of very precise 
data on meson physics have been and  will be collected: 
 

 KLOE & KLOE-II, BES, A1, A2@MAMI, CLAS, GlueX, JEF, 
 COMPASS, LHCb, PANDA,… 

 
They are background for searches of new states 
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Effective Field Theory 
Analyticity+Unitarity 
Dispersion Relations 
Regge Theory, Models 

Experimental data 
GlueX, CLAS12, JEF, 
COMPASS, BES, LHCb 
Lattice 

Fundamental parameters 
Resonances, new states 

Insight on QCD Dynamics 
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1.3 Analytical methods for studying light mesons

 
•  If E > 1 GeV: ChPT not valid anymore to 

describe dynamics of the processes                

                      Resonances appear :  
         For ππ:  I=1: ρ(770),  ρ(1450), ρ(1700), …, 

        Especially true for φ  (Mφ=1020 MeV)
�
�
�

•  Use Isobar model to  
describe the data   
       Improve to include FSI 
 

•  Build an amplitude with  
physical properties: 
à Analyticity, Unitarity  
     and Crossing Symmetry: 
          Dispersion Relations 
 

à Chiral constraints at LE 
 

à Regge behavior at HE 
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2.   Why is it interesting to study η → 3π ?  



2.1   Light quark masses 

•  Fundamental unknowns of the the QCD Lagrangian 
In the following, consider the 3 light flavours u,d,s 
 
 
 

•  High precision physics at low energy as a key of new physics? 
md  - mu : small isospin breaking corrections but to be taken into account for 
high precision physics 
 

 
•  No direct access to the quarks due to confinement! 
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2.2  Meson masses from ChPT 

•                     : masses treated as small perturbations 
           expansion in powers of  
 
 

•  Gell-Mann-Oakes-Renner relations:  

 

 
 
 
 

•  From LO ChPT without e.m effects: 

 
 

•  Electromagnetic effects: Dashen’s theorem 
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Dashen’69 ( ) ( ) ( )0 0
2 2 2 2 2
K K em em

M M M M O e m
π π+ +− − − =

   mu,d ,s  ΛQCD

 mq

(meson mass)2 = (spontaneous ChSB) x (explicit ChSB) 
  
 
  

qq  mq
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2.2  Meson masses from ChPT 

•                     : masses treated as small perturbations 
           expansion in powers of  
 
 

•  Gell-Mann-Oakes-Renner relations:  

 

 
 
 
 

•  From LO ChPT without e.m effects: 

 
 

•  Electromagnetic effects: Dashen’s theorem 
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2 = B0 mu + md( )
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0 u d emM B m m

π + = + +Δ

  MK 0
2 = B0 md + ms( )

( )2
0 u s emK

M B m m+ = + +Δ

2 unknowns      and    B0 emΔ
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2.2  Meson masses from ChPT 

         Quark mass ratios  
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Weinberg’77 
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2.3  Lattice QCD 

•  Compute the quark masses from first principles 
                     on the lattice 

 

Ø  QCD Lagrangian as input 

Ø  Calculate the spectrum of the low-lying states for different quark 
masses 

 

Ø  Tune the values of the quark masses such that the QCD spectrum is 
reproduced 

Ø  Set the scale by adding an external input or extract quark mass ratios 
 

•  NB: computation in the isospin limit: 

•  To get              , needs handle on e.m. effects: 
Ø  Input from phenomenology (e.g., Kaon mass difference)  

 

Ø  Put photons on the lattice  
     See FLAG’21 
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QCDL

ˆu dm m m= =

2
u dm m+

 mu − md
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2.4  Extracting light quark masses from η → 3π  

•  Decay forbidden by isospin symmetry  η(IG = 0+)→ 3π(IG = 1-) 
 
 
 

 

•          effects are small         Sutherland’66, Bell & Sutherland’68 
          Baur, Kambor, Wyler’96, Ditsche, Kubis, Meissner’09 

 
 

•  Decay rate measures the size of isospin breaking (mu − md) in the SM:  
 

              Unique access to (mu− md) 

 
      

 
 

  A = mu − md( ) A1 +α em A2

emα

( )2
u d

IB
m m

uu dd
−

= − −L→QCDL
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Decays of η 

•  η  decay from PDG:  
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Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

η IG (JPC ) = 0+(0 − +)

We have omitted some results that have been superseded by later
experiments. The omitted results may be found in our 1988 edition
Physics Letters B204B204B204B204 (1988).

η MASSη MASSη MASSη MASS

Recent measurements resolve the obvious inconsistency in previous η mass
measurements in favor of the higher value first reported by NA48 (LAI 02).
We use only precise measurements consistent with this higher mass value
for our η mass average.

VALUE (MeV) EVTS DOCUMENT ID TECN COMMENT

547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE547.862±0.017 OUR AVERAGE

547.865±0.031±0.062 NIKOLAEV 14 CRYB γp → pη

547.873±0.005±0.027 1M GOSLAWSKI 12 SPEC d p → 3He η

547.874±0.007±0.029 AMBROSINO 07B KLOE e+ e− → φ → ηγ
547.785±0.017±0.057 16k MILLER 07 CLEO ψ(2S) → J/ψη

547.843±0.030±0.041 1134 LAI 02 NA48 η → 3π0

• • • We do not use the following data for averages, fits, limits, etc. • • •

547.311±0.028±0.032 1 ABDEL-BARY 05 SPEC d p → 3He η
547.12 ±0.06 ±0.25 KRUSCHE 95D SPEC γp → ηp, threshold

547.30 ±0.15 PLOUIN 92 SPEC d p → 3He η

547.45 ±0.25 DUANE 74 SPEC π− p → n neutrals
548.2 ±0.65 FOSTER 65C HBC
549.0 ±0.7 148 FOELSCHE 64 HBC
548.0 ±1.0 91 ALFF-... 62 HBC
549.0 ±1.2 53 BASTIEN 62 HBC

1ABDEL-BARY 05 disagrees significantly with recent measurements of similar or better
precision. See comment in the header.

η WIDTHη WIDTHη WIDTHη WIDTH

This is the partial decay rate Γ(η → γγ) divided by the fitted branching
fraction for that mode. See the note at the start of the Γ(2γ) data block,
next below.

VALUE (keV) DOCUMENT ID

1.31±0.05 OUR FIT1.31±0.05 OUR FIT1.31±0.05 OUR FIT1.31±0.05 OUR FIT

η DECAY MODESη DECAY MODESη DECAY MODESη DECAY MODES

Scale factor/
Mode Fraction (Γi /Γ) Confidence level

Neutral modesNeutral modesNeutral modesNeutral modes
Γ1 neutral modes (72.12±0.34) % S=1.2

Γ2 2γ (39.41±0.20) % S=1.1

Γ3 3π0 (32.68±0.23) % S=1.1

HTTP://PDG.LBL.GOV Page 1 Created: 10/1/2016 20:06

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

Γ4 π02γ ( 2.56±0.22) × 10−4

Γ5 2π02γ < 1.2 × 10−3 CL=90%

Γ6 4γ < 2.8 × 10−4 CL=90%

Γ7 invisible < 1.0 × 10−4 CL=90%

Charged modesCharged modesCharged modesCharged modes
Γ8 charged modes (28.10±0.34) % S=1.2

Γ9 π+π−π0 (22.92±0.28) % S=1.2

Γ10 π+π−γ ( 4.22±0.08) % S=1.1

Γ11 e+ e−γ ( 6.9 ±0.4 ) × 10−3 S=1.3

Γ12 µ+µ−γ ( 3.1 ±0.4 ) × 10−4

Γ13 e+ e− < 2.3 × 10−6 CL=90%

Γ14 µ+µ− ( 5.8 ±0.8 ) × 10−6

Γ15 2e+ 2e− ( 2.40±0.22) × 10−5

Γ16 π+π− e+ e− (γ) ( 2.68±0.11) × 10−4

Γ17 e+ e−µ+µ− < 1.6 × 10−4 CL=90%

Γ18 2µ+ 2µ− < 3.6 × 10−4 CL=90%

Γ19 µ+µ−π+π− < 3.6 × 10−4 CL=90%

Γ20 π+ e− νe + c.c. < 1.7 × 10−4 CL=90%

Γ21 π+π−2γ < 2.1 × 10−3

Γ22 π+π−π0γ < 5 × 10−4 CL=90%

Γ23 π0µ+µ−γ < 3 × 10−6 CL=90%

Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),Charge conjugation (C ), Parity (P),
Charge conjugation × Parity (CP), orCharge conjugation × Parity (CP), orCharge conjugation × Parity (CP), orCharge conjugation × Parity (CP), or

Lepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modesLepton Family number (LF ) violating modes

Γ24 π0γ C < 9 × 10−5 CL=90%

Γ25 π+π− P,CP < 1.3 × 10−5 CL=90%

Γ26 2π0 P,CP < 3.5 × 10−4 CL=90%

Γ27 2π0γ C < 5 × 10−4 CL=90%

Γ28 3π0γ C < 6 × 10−5 CL=90%

Γ29 3γ C < 1.6 × 10−5 CL=90%

Γ30 4π0 P,CP < 6.9 × 10−7 CL=90%

Γ31 π0 e+ e− C [a] < 4 × 10−5 CL=90%

Γ32 π0µ+µ− C [a] < 5 × 10−6 CL=90%

Γ33 µ+ e− + µ− e+ LF < 6 × 10−6 CL=90%

[a] C parity forbids this to occur as a single-photon process.

HTTP://PDG.LBL.GOV Page 2 Created: 10/1/2016 20:06

  Mη = 547.862(17) MeV



2.5   Definitions 

•  η decay: η→ π+ π- π0 

 
 
 

•  Mandelstam variables 
 

       only two independent variables 
 
 

•  3 body decay         Dalitz plot  
 
 
 
 

Expansion around X=Y=0 
 
 

 
 
      

 
 

  
s = p

π + + p
π −( )2

, ( )0 2
,t p p

π π−= + ( )0

2
u p p

π π += +

0
2 2 2

02 3s t u M M M sη π π ++ + = + + ≡

( ) ( )040 42 ( , , )out i p p p p A s t uη π π ππ π π η π δ + −
+ − = − − −

Dalitz plot measurements

Dalitz plot variables

X
-1 0 1

Y

-1

0

1

1 X =
√
3

2mηQc
(u − t)

Y = 3
2mηQc

(

(mη −mπ0)2 − s
)

−1

Qc = mη − 2mπ+ −mπ0

Z = X2 + Y 2

Stefan Lanz (Lund University) η → 3π and quark masses Chiral Dynamics 2012 14
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θS

A(s, t,u)
2
= N 1+ aY + bY 2 + dX 2 + fY 3 + ...( )

  
X = 3

T+ −T−

Qc

= 3
2MηQc

u − t( )

Y =
3T0
Qc

−1 = 3
2MηQc

Mη −Mπ 0( )2 − s⎛
⎝

⎞
⎠ −1

02cQ M M Mη π π+≡ − −



2.6  Quark mass ratio 

•  In the following, extraction of Q  from η → π+ π- π0  

 
 
 
 
 

•  Aim: Compute M(s,t,u) with the best accuracy 
 

 
 
 
 
 

  
 
 
 

 

 
 
                        
 
 

 
 

      

 
 

Γ
η→π +π −π 0 =

1
Q4

MK
4

Mπ
4

MK
2 −Mπ

2( )2

6912π 3Fπ
4Mη

3 ds
smin

smax∫ du M (s, t,u)
2

u− ( s)

u+ ( s)

∫
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Determined from experiment 
 

Determined from: 
•  Dispersive calculation 
•  ChPT  
 

Fit to  
Dalitz distr. 
 

  
Q2 ≡

ms
2 − m̂2

md
2 − mu

2

⎡

⎣
⎢

⎤

⎦
⎥

   
m ≡

md + mu

2
⎡

⎣
⎢

⎤

⎦
⎥



2.6  Quark mass ratio 

•  Mass formulae to second chiral order                 Gasser & Leutwyler’85 

 
 
 
 

      with 
     
•  The same O(m) correction appears in both ratios 
            Take the double ratio 

 
 
 
 
Very Interesting quantity to determine since Q2 does not receive any 
correction at NLO! 

 
 

 
 
 
 
 

 

 
•  Using Dashen’s theorem and inserting Weinberg LO values 
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2.6  Quark mass ratio 

•  The same O(m) correction appears in both ratios 
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2 2
2

2 2
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=
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2
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2

M
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2.6  Quark mass ratio 

•  From Q         Ellipse in the plane ms/md, mu/md            Leutwyler’s ellipse 
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2.6  Quark mass ratio 

•  Estimate of Q: 
 
 
 

 
Ø  From corrections to the Dashen’s theorem  

 
 
The corrections can be large due to e2ms corrections, difficult to 
estimate due to LECs 

 
 
Ø  From η→ π+ π- π0 : 

 
 
 
•  In the following, compute the normalized amplitude M(s,t,u) with the 

best accuracy          extraction of Q 

 

 
 
 
 
 

•  From lattice determinations of        and       +  
  

 
 
 
 

•  In the following, extraction of Q from η→ π+ π- π0  
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Γη→3π ∝ A(s, t,u)

2

∫ ∝Q−4

( ) ( ) ( ) ( )0 0
2 2 2 2 2

0 d u K K
B m m M M M M O e m

π π+ +− = − − − +
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MK
2 MK

2 − Mπ
2( )
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2 +O(M 3 )
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3 3Fπ
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2.6  Quark mass ratio 

•  Use Q to determine       and        from lattice determinations of        and  
 
 
 
 
 
 

 
 

•  From lattice determinations of        and      +  
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3.   Computation of the Amplitude 



3.1   Introduction 

•  What do we know?  
 

 
 

•  Compute the amplitude using ChPT : the effective theory that describe 
dynamics of the Goldstone bosons (kaons, pions, eta) at low energy 
 
 
 

•  Goldstone bosons interact weakly at low energy and 
Expansion organized in external momenta and quark masses    
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   mu , md ≪ ms < ΛQCD

 Weinberg’s power counting rule 

  p << ΛH = 4πFπ ~ 1 GeV
   
Leff =  Ld

d≥2
∑  , Ld =  O pd( )  , p ≡ q, mq{ }
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3.2   Chiral Perturbation Theory 

•  What do we know?  

•  Compute the amplitude using ChPT : 
 
 
 
 
 
The Chiral series has convergence problems 
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Γη→3π = 66 + 94 + ... + ...( )eV = 300 ±12( )eV

LO NLO NNLO 

LO: 
NLO: 
 NNLO: PDG’16 

Osborn, Wallace’70 

Gasser & Leutwyler’85 

 Bijnens & Ghorbani’07 

Anisovich & Leutwyler’96  

s = u 



•  Decay amplitude  

 
 

 
 

 
 

 

 
 

 
   

 

 

 
 

      

 
 

3.3  Neutral Channel : η→ π0 π0 π0  

2

3 1 2A Zη π α→Γ ∝ ∝ + with 
23

1

32 1
3

i

i n

T
Z

Q=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

  α  0.015

 α = −0.0288 ± 0.0012

03nQ M Mη π
≡ −

 Important discrepancy between  
ChPT and experiment!  

Help of a dispersive treatment? 
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3.4  Dispersive treatment 

•  The Chiral series has convergence problems   
 

 Large ππ  final state interactions  
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 Roiesnel & Truong’81 

−
η



3.4  Dispersive treatment 

•  The Chiral series has convergence problems   
 

 Large ππ  final state interactions  

 
 

•  Dispersive treatment :  
–  analyticity, unitarity and crossing symmetry 
–  Take into account all the rescattering effects 
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−
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3.5  Why a new dispersive analysis? 

 

•  Several new ingredients:  
–  New inputs available: extraction ππ phase shifts has improved 

 
 
 

 
–  New experimental programs, precise Dalitz plot measurements 
 
 
 
 
 
–  Many improvements needed in view of very precise data: inclusion of  

‒  Electromagnetic effects (O(e2m)) 

 

‒  Isospin breaking effects 
 
 
 
 
 

 

 

Ditsche, Kubis, Meissner’09 
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves        exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
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Ø         isospin I rescattering in two particles  
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Figure 4: Pictorial representation of the inhomogeneous unitarity relation of Eq. (4.21): the homogeneous term analogous to a form factor unitarity
relation (left), plus the projection of a typical diagram representing crossed-channel dynamics (right), resulting in the inhomogeneous Omnès
problem. The double line represents a heavy particle with its three-body decay partial wave denoted by the blue dot, the single lines depict the three
outgoing decay products that rescatter elastically (red dots).

Since both f I
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J(s) are analytic on the entire complex plane except on the real axis
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This allows us to write an n-times subtracted dispersion relation for gI
J(s), which, solved for f I

J (s), results in the
solution of the inhomogeneous Omnès problem
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As Fig. 4 suggests, the inhomogeneous Omnès problem provides a possible dispersion-theoretical description
of three-body decays in the form of Khuri–Treiman equations [181, 182], which we will describe in more detail in
Sect. 5.1.3 for the decay ⌘ ! 3⇡. Alternatively, unitarity relations of the form Eq. (4.21) have frequently been used
to model left-hand cuts in partial waves of four-point amplitudes through the exchange of narrow resonances in the
crossed channel. We will see this at work in the description of ⌘(0) ! ⇡+⇡��, see Sect. 6.3, but other applications of
this technique include �� ! ⇡⇡ [183] or decays of heavy mesons [184] and heavy quarkonia [185–187] involving
pion pairs.

In principle dispersion relations provide us with a rigorous, model-independent method to describe intermediate-
energy regions: beyond the chiral regime, yet mostly limited to the range where elastic unitarity applies. In practice
the use of these techniques is limited by our knowledge of the experimental input. However, as we will see in the next
sections dispersive techniques used in combination with �PT have been shown to be successful to describe various ⌘
and ⌘0 decays very accurately.

4.4. Roy equations
A central piece of input to many of the dispersive analyses discussed throughout this review are pion–pion phase

shifts. Pion–pion scattering constitutes the most important final-state interaction in many ⌘ and ⌘0 decays; see, e.g., the
Omnès function in Eq. (4.20). As a lot of progress in the description of light-meson decays are based on the precision
with which we nowadays know the ⇡⇡ phases, we here wish to indicate very briefly how these have been constrained
so rigorously, by the means of so-called Roy equations [188].

Roy equations correspond to a coupled system of partial-wave dispersion relations, as such based on analyticity
of the scattering amplitude, which make maximal use of crossing symmetry, unitarity, and isospin. To construct this
set of equations, one considers twice-subtracted dispersion relations at fixed Mandelstam t:

T (s, t) = c(t) +
1
⇡

Z 1

4M2
⇡

ds0
⇢ s2

s02(s0 � s)
+

u2

s02(s0 � u)

�

Im T (s0, t) , (4.25)
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Figure 2: Graphical representation of the Cauchy contour in the complex s plane.

Of particular interest in the context of this review is the extraction of Ref. [146] (compare also the extensive discussion
in Ref. [150]) based exclusively on the transition form factors of ⌘ and ⌘0, see Sects. 6.2 and 6.4, which combines
information on the two-photon decay widths with high-energy space-like data on ��⇤ ! ⌘(0), but avoids potential
theoretical bias when combining these with other, completely unrelated experimental input. The authors arrive at

F8 = 1.27(2)F⇡ , F0 = 1.14(5)F⇡ , ✓8 = �21.2(1.9)� , ✓0 = �6.9(2.4)� ;
Fq = 1.03(4)F⇡ , Fs = 1.36(4)F⇡ , �q = 39.6(2.3)� , �s = 40.8(1.8)�, (3.19)

which is much closer to Eq. (3.17). A combined study of diphoton decays of the lightest pseudoscalars as well as
vector-meson conversion decays in resonance chiral theory [151] finds results similarly compatible with Eq. (3.17).

Finally, simulations of the ⌘–⌘0 system in lattice QCD [152–154] are becoming extremely competitive in accuracy
with phenomenological extractions, with the latest results on the flavor-mixing scheme translating into [154]

Fq = 0.960(37)(46)F⇡ , Fs = 1.143(23)(05)FK = 1.363(27)(06)F⇡ , � = 38.8(2.2)(2.4)� , (3.20)

where the second errors refer to uncertainties induced by chiral extrapolations to the physical point.

4. Dispersion theory

Dispersive techniques are powerful, model-independent methods based on the fundamental principles of analyt-
icity (the mathematical manifestation of causality) and unitarity (a consequence of probability conservation). By
exploiting nonperturbative relations between amplitudes, they allow for a resummation of rescattering e↵ects between
final-state particles, in contrast to a strictly perturbative �PT expansion in which such e↵ects would be treated order-
by-order only. Dispersion theory, coupled with �PT, therefore allows one to extend the �PT e↵ective description of
strong dynamics from low energy to an intermediate-energy range where resonances start to appear.

4.1. Analyticity
As a practical example, we consider a form factor F(s), a function of a single Mandelstam variable s. (A similar

discussion applies to scattering amplitudes, as we describe below.) In many cases, these form factors are real below
some threshold, s < sth, while above threshold, s > sth, they have both real and imaginary parts, the latter due to
the propagation of on-shell intermediate states. Analyticity allows us to relate the real part of the form factor to
its discontinuity or imaginary part. To fully exploit these properties one needs to analytically continue s into the
complex plane where the discontinuity is represented as a branch cut along the positive real axis, for s > sth, as
shown in Fig. 2. The form factor is then a complex-valued function F(s) of complex argument s, which has the
following properties: (1) F(s) is real along the real axis for s < sth (below threshold) and (2) F(s) is analytic in the
entire complex plane except along the branch cut. The sign of the imaginary part of F along the cut is fixed by the
convention F(s + i✏) = Re F(s) + i Im F(s), with ✏ a positive infinitesimal quantity.
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Figure 4: Pictorial representation of the inhomogeneous unitarity relation of Eq. (4.21): the homogeneous term analogous to a form factor unitarity
relation (left), plus the projection of a typical diagram representing crossed-channel dynamics (right), resulting in the inhomogeneous Omnès
problem. The double line represents a heavy particle with its three-body decay partial wave denoted by the blue dot, the single lines depict the three
outgoing decay products that rescatter elastically (red dots).
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This allows us to write an n-times subtracted dispersion relation for gI
J(s), which, solved for f I
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solution of the inhomogeneous Omnès problem
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As Fig. 4 suggests, the inhomogeneous Omnès problem provides a possible dispersion-theoretical description
of three-body decays in the form of Khuri–Treiman equations [181, 182], which we will describe in more detail in
Sect. 5.1.3 for the decay ⌘ ! 3⇡. Alternatively, unitarity relations of the form Eq. (4.21) have frequently been used
to model left-hand cuts in partial waves of four-point amplitudes through the exchange of narrow resonances in the
crossed channel. We will see this at work in the description of ⌘(0) ! ⇡+⇡��, see Sect. 6.3, but other applications of
this technique include �� ! ⇡⇡ [183] or decays of heavy mesons [184] and heavy quarkonia [185–187] involving
pion pairs.

In principle dispersion relations provide us with a rigorous, model-independent method to describe intermediate-
energy regions: beyond the chiral regime, yet mostly limited to the range where elastic unitarity applies. In practice
the use of these techniques is limited by our knowledge of the experimental input. However, as we will see in the next
sections dispersive techniques used in combination with �PT have been shown to be successful to describe various ⌘
and ⌘0 decays very accurately.

4.4. Roy equations
A central piece of input to many of the dispersive analyses discussed throughout this review are pion–pion phase

shifts. Pion–pion scattering constitutes the most important final-state interaction in many ⌘ and ⌘0 decays; see, e.g., the
Omnès function in Eq. (4.20). As a lot of progress in the description of light-meson decays are based on the precision
with which we nowadays know the ⇡⇡ phases, we here wish to indicate very briefly how these have been constrained
so rigorously, by the means of so-called Roy equations [188].

Roy equations correspond to a coupled system of partial-wave dispersion relations, as such based on analyticity
of the scattering amplitude, which make maximal use of crossing symmetry, unitarity, and isospin. To construct this
set of equations, one considers twice-subtracted dispersion relations at fixed Mandelstam t:
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Figure 4: Pictorial representation of the inhomogeneous unitarity relation of Eq. (4.21): the homogeneous term analogous to a form factor unitarity
relation (left), plus the projection of a typical diagram representing crossed-channel dynamics (right), resulting in the inhomogeneous Omnès
problem. The double line represents a heavy particle with its three-body decay partial wave denoted by the blue dot, the single lines depict the three
outgoing decay products that rescatter elastically (red dots).
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This allows us to write an n-times subtracted dispersion relation for gI
J(s), which, solved for f I

J (s), results in the
solution of the inhomogeneous Omnès problem
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As Fig. 4 suggests, the inhomogeneous Omnès problem provides a possible dispersion-theoretical description
of three-body decays in the form of Khuri–Treiman equations [181, 182], which we will describe in more detail in
Sect. 5.1.3 for the decay ⌘ ! 3⇡. Alternatively, unitarity relations of the form Eq. (4.21) have frequently been used
to model left-hand cuts in partial waves of four-point amplitudes through the exchange of narrow resonances in the
crossed channel. We will see this at work in the description of ⌘(0) ! ⇡+⇡��, see Sect. 6.3, but other applications of
this technique include �� ! ⇡⇡ [183] or decays of heavy mesons [184] and heavy quarkonia [185–187] involving
pion pairs.

In principle dispersion relations provide us with a rigorous, model-independent method to describe intermediate-
energy regions: beyond the chiral regime, yet mostly limited to the range where elastic unitarity applies. In practice
the use of these techniques is limited by our knowledge of the experimental input. However, as we will see in the next
sections dispersive techniques used in combination with �PT have been shown to be successful to describe various ⌘
and ⌘0 decays very accurately.

4.4. Roy equations
A central piece of input to many of the dispersive analyses discussed throughout this review are pion–pion phase

shifts. Pion–pion scattering constitutes the most important final-state interaction in many ⌘ and ⌘0 decays; see, e.g., the
Omnès function in Eq. (4.20). As a lot of progress in the description of light-meson decays are based on the precision
with which we nowadays know the ⇡⇡ phases, we here wish to indicate very briefly how these have been constrained
so rigorously, by the means of so-called Roy equations [188].

Roy equations correspond to a coupled system of partial-wave dispersion relations, as such based on analyticity
of the scattering amplitude, which make maximal use of crossing symmetry, unitarity, and isospin. To construct this
set of equations, one considers twice-subtracted dispersion relations at fixed Mandelstam t:

T (s, t) = c(t) +
1
⇡

Z 1

4M2
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•  Decomposition of the amplitude as a function of isospin states  

 
 
 

•  Unitarity relation:  

 
 
 

•  Relation of dispersion to reconstruct the amplitude everywhere: 

•  PI(s) determined from a fit to NLO ChPT + experimental Dalitz plot 
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3.7  Representation of the amplitude 
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4.   Fits to the Dalitz plots and Results 



4.1  Isospin breaking corrections 

•  Dispersive calculations in the isospin limit        to fit to data one has to include 
isospin breaking corrections  

 
 
 

•                                                              with MDKM :  amplitude at one loop 
                 with O(e2m) effects 

 
 

                     physical boundaries 
 

 

Mc/n(s, t,u) = Mdisp(s, t,u)
MDKM (s, t,u)
!MGL(s, t,u)

MGL: amplitude at one loop in  
        the isospin limit  

Gasser & Leutwyler’85 

Ditsche, Kubis, Meissner’09 

Out[392]=
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Kinematic map:  
isospin symmetric boundaries  

à       
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Xn = 3

T2 −T1

Qn

  
Yn =

3T3

Qn

−1

Qn ≡ Mη − 3Mπ 0



4.2  η → 3π  Dalitz plot 

•  In the charged channel: experimental data from WASA, KLOE, BESIII 

•  New data expected from CLAS and GlueX with very different systematics 
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FIG. 7: (Color online) The experimental background
subtracted Dalitz plot distribution represented by the
two dimensional histogram with 371 bins. Only bins
used for the Dalitz parameter fits are shown. The

physical border is indicated by the red line.

TABLE V: Summary of the systematic errors for the
asymmetries.

syst. error (⇥105) �ALR �AQ �AS

EGmin ±1 ±0 ±4

BkgSub ±5 ±3 ±16

✓+� , ✓�� cut +2
�0

+0
�2

+2
�0

�te cut +49
�92

+48
�22

+ 7
�15

�te ��t⇡ cut +0
�2

+3
�0

+0
�1

✓⇤�� cut + 1
�57

+3
�4

+0
�8

MM +0
�4

+0
�1

+1
�2

ECL ±9 ±0 ±25

TOTAL + 50
�109

+48
�23

+31
�35

These results confirm the tension with the theoretical
calculations on the b parameter, and also the need for
the f parameter. In comparison to the previous mea-
surements shown in Tab. I, the present results are the
most precise and the first including the g parameter.
The improvement over KLOE(08) analysis comes from
four times larger statistics and improvement in the sys-
tematic uncertainties which are in some cases reduced
by factor 2 � 3. The major improvement in the system-
atic uncertainties comes from the analysis of the e↵ect of
the Event classification with an unbiased prescaled data
sample.

The final values of the charge asymmetries are all con-
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FIG. 8: (Color online) The experimental background
subtracted Dalitz plot data, Ni, (points with errors),

compared to set #4 fit results (red lines connecting bins
with the same Y value). The row with lowest Ni values

corresponds to the highest Y value (Y = +0.75).
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FIG. 9: (Color online) Distribution of the normalized
residuals, ri, for fit #4.
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•  The amplitude along the line s = u :  

 

4.3  Results: Amplitude for η→ π+ π- π0 decays  
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•  The amplitude along the line t = u :  

 

4.3  Results: Amplitude for η→ π+ π- π0 decays  
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•  The amplitude squared in the neutral channel is  

4.4  Z distribution for η→ π0 π0 π0 decays  

The agreement is excellent between  
our prediction and the data! 
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Comparison of results for α

Emilie Passemar 47  α = −0.0307 ± 0.0017



Shift of Q towards  
smaller values  
Better agreement with  
 η → 3π result  

4.5  Quark mass ratio 
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  Q = 22.1 ± 0.7

•  Experimental systematics needs to be taken into account 

20 21 22 23 24

Q

χPT O(p4) (Gasser, Leutwyler’85)

η → 3π

χPT O(p6) (Bijnens, Ghorbani’07)

dispersive (Anisovich et al.’96)

dispersive (Kambor et al.’96)

dispersive (Kampf et al.’11)

dispersive (Albaladejo et al.’17)

dispersive (Guo et al., JPAC’15’17)

dispersive (Colangelo et al.’18)

Weinberg’77

kaon mass splitting

Kastner, Neufeld’08

Nf = 2

lattice, FLAG’21

Nf = 2 + 1

Nf = 2 + 1 + 1

New lattice results 



 
 
 
 
 
 

•  Smaller values for Q        smaller values for ms/md and mu/md than LO ChPT  
  

 

4.5  Light quark masses 
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  Q = 22.1 ± 0.7

  

mu

md

= 0.44 ± 0.03

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

1

mu⎯md

0 0

5 5

10 10

15 15

20 20

25 25

ms⎯md

Weinberg 1977
ms⎯mud

= 27.23(10)  FLAG 2021

Q = 22.1(7) 

Intersection



4.5  Light quark masses 
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4.6  Prospects 
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•  Uncertainties in the quark mass ratio 
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Figure 17: Experimental status of �(⌘ ! ��). The five points on the left are the results from collider experiments [319, 328–331], point 6
represents the Cornell Primako↵ measurement [332]. Point 7 is the projected error for the PrimEx-eta measurement with a ⇠ 3% total error,
arbitrarily plotted to agree with the average value of previous measurements. Figure reprinted from Ref. [89].

to separate the Primako↵ process from hadronic backgrounds, as demonstrated in the earlier Primako↵ experiment
by the Cornell group [332]. Two experimental techniques will be applied in the PrimEx-eta experiment to ameliorate
this problem. One is to go to higher photon energies, which, in addition to increasing the Primako↵ cross section
[�P ⇠ Z2 log(E)], will help better separating di↵erent processes by pushing the Primako↵ peak to smaller angles
[✓P ⇠ M2

⌘/(2E2)] as compared to the nuclear coherent production peaked at ✓NC ⇠ 2/(ER) [334], where R is the nuclear
radius (R ⇠ A1/3/M⇡). As such, a higher-energy beam in the JLab 12 GeV era is vital for this measurement. The
second is to use lighter targets, 1H and 4He, which are more compact compared to heavier nuclei, thereby enhancing
coherency as well as o↵ering less distortion to the physics signals due to the initial- and final-state interactions in
the nuclear medium. Since form factors for lighter nuclei fall slowly with increasing momentum transfer, the nuclear
coherent mechanism is peaked at larger angles for lighter nuclei, which helps to separate it from Primako↵ production.
The PrimEx-eta experiment collected the first data set in spring 2019 on a liquid 4He target and data analysis is in
progress. More data will be expected from the second run in fall 2021.

The precision measurement of the ⌘ radiative decay width will o↵er a sensitive probe into low-energy QCD. One
example is the extraction of the ⌘–⌘0 mixing angle. In addition, an improvement in �(⌘ ! ��) will also have a broad
impact on all other ⌘ partial decay widths in the PDG listing, as they are determined by using the ⌘! �� decay width
and their corresponding experimental branching ratios. This holds true in particular for the ⌘ ! 3⇡ decay (discussed
in Sect. 5.1) used for an accurate determination of the quark mass double ratio Q [203, 229]. As shown in Fig. 18, a
new Primako↵ result from the PrimEx-eta experiment will make an impact on Q by resolving the systematic di↵erence
between the results determined by using collider and previous Primako↵ measurements.

Lastly, we discuss ⌘0 ! ��. All existing measurements of �(⌘0 ! ��) were carried out by using e+e� colli-
sions, with experimental uncertainty for each individual experiment in the range of 7.3%–27% [56]. A planned new
experiment with GlueX, an extension of PrimEx-eta, will perform the first Primako↵ measurement with a projected
uncertainty of 4% for �(⌘0 ! ��). This precision measurement, coupled with theory, will provide further input for
global analyses of the ⌘–⌘0 system to determine their mixing angles and decay constants. Moreover, it will further pin
down the ⌘0 contribution to light-by-light scattering in (g � 2)µ.
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4.7  Expected Impact of JLab 22 GeV program 
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Figure 18: Light quark mass ratio determined by two di↵erent methods. The left-hand side indicates the values of Q calculated from the ⌘ ! 3⇡
decay corresponding to the Primako↵ [332] and collider average [54] experimental results for �(⌘! ��) as input, as well as the PDG averages for
B(⌘ ! ⇡+⇡�⇡0) and B(⌘ ! ��), see Table 1. The right-hand side shows the results for Q obtained from the kaon mass di↵erence, see Eq. (5.24),
with theoretical estimates for the electromagnetic corrections based on Dashen’s theorem (5.8), Ref. [252] (KN), or the lattice [259]. Figure adapted
from [203].

the nuclear medium. Since form factors for lighter nuclei fall slowly with increasing momentum transfer, the nuclear
coherent mechanism is peaked at larger angles for lighter nuclei, which helps to separate it from Primako↵ production.
The PrimEx-eta experiment collected the first two data sets in spring 2019 and in fall 2021 on a liquid 4He target.
More data will be expected from the third run in 2022.

The precision measurement of the ⌘ radiative decay width will o↵er a sensitive probe into low-energy QCD. One
example is the extraction of the ⌘–⌘0 mixing angle. In addition, an improvement in �(⌘ ! ��) will also have a broad
impact on all other ⌘ partial decay widths in the PDG listing, as they are determined by using the ⌘! �� decay width
and their corresponding experimental branching ratios. This holds true in particular for the ⌘ ! 3⇡ decay (discussed
in Sect. 5.1) used for an accurate determination of the quark mass double ratio Q [203, 229]. As shown in Fig. 18,
a new Primako↵ result from the PrimEx-eta experiment (the red point) will make an impact on Q by resolving the
systematic di↵erence between the results determined by using collider and previous Primako↵ measurements.

Lastly, we discuss ⌘0 ! ��. All existing measurements of �(⌘0 ! ��) were carried out by using e+e� colli-
sions, with experimental uncertainty for each individual experiment in the range of 7.3%–27% [54]. A planned new
experiment with GlueX, an extension of PrimEx-eta, will perform the first Primako↵ measurement with a projected
uncertainty of 4% for �(⌘0 ! ��). This precision measurement, coupled with theory, will provide further input for
global analyses of the ⌘–⌘0 system to determine their mixing angles and decay constants. Moreover, it will further pin
down the ⌘0 contribution to light-by-light scattering in (g � 2)µ.

6.2. ⇡0, ⌘, ⌘0 transition form factors
The general two-photon couplings for the lightest flavor-neutral pseudoscalar mesons P = ⇡0, ⌘, ⌘0 are described

by FP�⇤�⇤ (q2
1, q

2
2), defined in Eq. (6.1). Di↵erent experimental techniques can be used to access these TFFs in various

kinematical regions, including both time-like and space-like momenta, which are related to one another by analytic
continuation. In the space-like case, it is customary to express the photon momenta in terms of the positive variables
Q2

1,2 = �q2
1,2 > 0.

The general (doubly-virtual) TFFs are challenging both to predict theoretically and measure experimentally. Con-
sequently, most attention has focused on the singly-virtual TFF FP�⇤�(q2) ⌘ FP�⇤�⇤ (q2, 0) involving one real and one
virtual photon. Although we present more sophisticated treatments below, the approximate behavior of this function
can be understood simply within the context of VMD, which predicts a parameterization of the form

FP�⇤�(q2) ⌘ FP�⇤�⇤ (q2, 0) =
FP��

1 � q2/⇤2
P
, (6.8)
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Global Experimental Efforts  in η Decays  
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A New Proposal: REDTOP 

54 arXiv:2203.07651  up to ~5x1013 η per year! 
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Another New Proposal: eta-Factory at HIAF 

up to ~1013 η per year 

arXiv:2407.00874v1 

HIAF, Huizhou, China 
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5.   Conclusion and Outlook 



5.1  Conclusion 
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•  η  and η’ allows to study the fundamental properties of QCD and test the SM 
–  Extraction of fundamental parameters of the SM,  

         e.g. light quark masses  
–  Study of chiral dynamics 

–  Study of CP violation 
 
 

•  To studies η  and η’with the best precision: Development of amplitude 
analysis techniques consistent with analyticity, unitarity, crossing symmetry         
dispersion relations allow to take into account all rescattering effects being as 
model independent as possible combined with ChPT          Provide 
parametrization for experimental studies 

 
 

•  In this talk, illustration with η → 3π  and extraction of the light quark masses 
�

•  Many more topics could be explored with η  and η’ 
Gan, Kubis, E. P., Tulin’22 



5.2  Outlook  
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•  New η and η’ programs JEF, REDTOP and HIEPA 
•  In our opinion the most promising channels to study:  

•  Synergies between different physics: 
Ø Standard Model precision analyses 
Ø Discrete symmetry tests 
Ø Search for light BSM particles 

What else? — highlights in η and η′ physics

New experiments: JEF and REDTOP −→ A. Somov, C. Gatto

Our (personal) recommended highlights selection:

Decay channel Standard Model Discrete symmetries Light BSM particles

η→ π+π−π0 light quark masses C/CP violation scalar bosons (also η′)

η(′)
→ γγ η–η′ mixing, precision partial widths

η(′)
→ ℓ+ℓ−γ (g − 2)µ Z′ bosons, dark photon

η→ π0γγ higher-order χPT, scalar dynamics U(1)B boson, scalar bosons

η(′)
→ µ+µ− (g − 2)µ, precision tests CP violation

η→ π0ℓ+ℓ− C violation scalar bosons

η(′)
→ π+π−ℓ+ℓ− (g − 2)µ ALPs, dark photon

η(′)
→ π0π0ℓ+ℓ− C violation ALPs

−→ decay channels that allow for synergies between

• Standard Model precision analyses

• discrete symmetry tests

• searches for light BSM particles Gan, BK, Passemar, Tulin 2020

B. Kubis, Fundamental physics with η and η
′ decays – p. 25

Gan, Kubis, E. P., Tulin’22 



6.   Back-up 



Studying C & CP violation with η → 3π  asymetries 

•  η(IG = 0+)→ 3π(IG = 1-) breaks G parity 
 

Ø  In the SM:  C conserved, isospin broken 

Ø  Now in BSM: C broken, isospin either conserved or broken 

•  2 additional amplitudes which are C violating:  
interference: π+ ↔ π− asymmetries linear in BSM couplings  
 

•  Use KT approach to determine the hadronic amplitudes 

 
 
•            and          lead to different interference patterns  
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Gardner & Shi’19 
Akdag, Isken, Kubis’21 
Akdag, Kubis, Wirzba’22 
 
 

A new old proposal: Dalitz plot asymmetries

−→ H. Akdag

• η(IG = 0+)→ 3π(IG = 1−) breaks G-parity:

◃ SM: C conserved, isospin broken (& el.magn. suppressed)

−→ ideal process to extract mu −md −→ E. Passemar, T. Isken

◃ BSM: C broken, isospin either conserved or broken

M(s, t, u) = MC
1 (s, t, u) +M ̸C

0 (s, t, u) +M ̸C
2 (s, t, u)

• interference: π+ ↔ π− asymmetries linear in BSM couplings
Gardner, Shi 2019

• follow SM strategy for hadronic amplitudes: Akdag, Isken, BK 2021

analyse M ̸C
0,2(s, t, u) using dispersive Khuri–Treiman framework

η

η
π

π
π

π

π

π

B. Kubis, Fundamental physics with η and η
′ decays – p. 19

η → π+π−π0: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)
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• asymmetries constrained to the permille level
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η → π+π−π0: Dalitz plot asymmetries
• Dalitz plot decomposition (central fit result)
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• asymmetries constrained to the permille level
• M ̸C

0 and M ̸C
2 lead to different interference patterns
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η → π+π−π0: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)
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Studying C & CP violation with η → 3π  asymetries 

 
 

•  Asymmetries constrained to the permille level 
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Akdag, Isken, Kubis’21 
 

η → π+π−π0: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)
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η → π+π−π0: Dalitz plot asymmetries

• Dalitz plot decomposition (central fit result)
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Measurement of  η → 3π 

•  More information in the charged compared to the neutral channel  
       neutral channel sum over isospin:  
 
 
 
Only one Dalitz plot parameter determined α 
 
 

Emilie Passemar 

( , , ) ( , , ) ( , , ) ( , , )A s t u A s t u A t u s A u s t= + +

  An s, t,u( ) 2
= N 1 + 2α Z( )
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4.4  Dispersion Relations for the MI(s)   

63 

•    

     Similarly for M1 and M2 
 

•  Four subtraction constants to be determined: α0, β0, γ0 and one more in 
M1 (β1) 

 

•  Inputs needed for these and for the ππ phase shifts  
–  M0: ππ scattering, ℓ=0, I=0 
–  M1: ππ scattering, ℓ=1, I=1 
–  M2: ππ scattering, ℓ=0, I=2  

 

•  Solve dispersion relations numerically by an iterative procedure 

( )2

03
2 0 0

0 0 0 0 0 3
04

ˆsin ( ') ( ')'( ) ( )
' ( ') 'M

s M ss dsM s s s s
s s s s i

π

δα β γ
π ε

∞⎛ ⎞
⎜ ⎟= Ω + + +⎜ ⎟Ω − −⎝ ⎠

∫

Omnès function 
 

Iδ l
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Corrections to Dashen’s theorem 

•  Dashen’s Theorem 

•  With higher order corrections 
 
•  Lattice : 

•  ENJL model: 

•  VMD: 

•  Sum Rules: 

( ) ( )0 0
2 2 2 2

em em
- -

K K
M M M M

π π+ += ( )0
em

- 1.3 MeV
K K

M M+ =

( )0
em

- 1.9 MeV, 22.8
K K

M M Q+ = = Ducan et al.’96 

( )0
em

- 2.3 MeV, 22
K K

M M Q+ = = Bijnens & Prades’97 

( )0
em

- 2.6 MeV, 21.5
K K

M M Q+ = = Donoghue & Perez’97 

( )0
em

- 3.2 MeV, 20.7
K K

M M Q+ = = Anant & Moussallam’04 

Update  20.7 1.2Q = ± Kastner & Neufeld’07 
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1.1   Light quark masses 

•  Fundamental unknowns of the the QCD Lagrangian 
In the following, consider the 3 light flavours u,d,s 

•  High precision physics at low energy as a key of new physics? 
md  - mu : small isospin breaking corrections but to be taken into account for 
high precision physics 
 
Ex: Vus from                                  decays  

 
 
 
 
 
 
 
 

 
•  No direct access to the quarks due to confinement! 
 65 

3lK
± ( )0

lK lπ ν± ±→ NA62, KLOE-2 

u

s

,eµ

,eµν

W

usV

g g
+

LANL, Los Alamos, 11 January 
2011 
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3.8  Subtraction constants 

•  Extension of the numbers of parameters compared to Anisovich & Leutwyler’96 

 
 

•  In the work of Anisovich & Leutwyler’96 matching to one loop ChPT 
Use of the SU(2) x SU(2) chiral theorem 
       The amplitude has an Adler zero along the line s=u 

 
•  Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III 

      Use the data to directly fit the subtraction constants 
 

•  However normalization to be fixed to ChPT!     
 
 
 

 

  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2
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3.8  Subtraction constants 

•  The subtraction constants are  

 
 
 
 

       Only 6 coefficients are of physical relevance 
 

•  They are determined from combining ChPT with a fit to KLOE Dalitz plot 

•  Taylor expand the dispersive MI   
Subtraction constants         Taylor coefficients 

�
�

•  Gauge freedom in the decomposition of M(s,t,u) 

P0 (s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

P2(s) = α 2 + β2s + γ 2s
2 + δ 0s

3

  M0(s) = A0 + B0s +C0s
2 + D0s

3 + ...

  M1(s) = A1 + B1s +C1s
2 + ...

  M2(s) = A2 + B2s +C2s
2 + D2s

3 +
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3.8  Subtraction constants 

•  Build some gauge independent combinations of Taylor coefficients 
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3

Aphys = KÃ. As discussed below, the prediction ob-
tained for the branching ratio of the two modes provides
a stringent test of this approximate formula: the factor
|K|2 barely a↵ects the Dalitz plot distribution because it
is nearly constant, but it di↵ers from unity and therefore
a↵ects the rate. Details will be given in [22].

The experimental results on the Dalitz plot distribu-
tion do not su�ce to determine all subtraction constants.
In particular, the overall normalization of the amplitude
is not constrained by these. We use the one-loop repre-
sentation of �PT to constrain the admissible range of the
subtraction constants. To do this we consider the Taylor
coe�cients of the functions M0(s), M1(s) and M2(s):

MI(s) = AI +BIs+ CIs
2 +DIs

3 + . . . (8)

These coe�cients also depend on the choice made in the
decomposition (2), but the combinations

H0 =A0 +
4

3
A2 + s0

✓
B0 +

4

3
B2

◆

H1 =A1 +
1

9
(3B0 � 5B2)� 3C2s0

H2 =C0 +
4

3
C2, H3 = B1 + C2

H4 =D0 +
4

3
D2, H5 = C1 � 3D2

(9)

are independent thereof (s0 stands for the value of the
Mandelstam variables at the center of the Dalitz plot:
s0 = 1

3M
2
⌘ + M2

⇡). We use the constant H0 to param-
eterize the normalization of the amplitude and describe
the relative size of the subtraction constants by means
of the variables hI = HI/H0. Specifying the 6 threshold
coe�cients H0, h1, . . . , h5 is equivalent to specifying the
6 subtraction constants ↵0, �0, . . ., �1.

At leading order of the chiral expansion, only HLO
0 = 1

and hLO
1 = 1/(M2

⌘ �M2
⇡) = 3.56 are di↵erent from zero

(throughout, dimensionful quantities are given in GeV
units). The NLO representation yields corrections for
these two coe�cients as well as the leading terms in the
chiral expansion of h2 and h3. The one-loop formulae
can be expressed in terms of the masses, the decay con-
stants F⇡, FK and the low energy constant L3, which only
contributes to H3. We are using the recently improved
determination L3 = �2.65(46) · 10�3 of [23], so that the
one-loop representation does not contain any unknowns.

Experience with �PT indicates that, unless the quan-
tity of interest contains strong infrared singularities, sub-
sequent terms in the chiral perturbation series based on
SU(3)⇥ SU(3) are smaller by a factor of 20� 30%. The
values HNLO

0 = 1.176, hNLO
1 = 4.52 confirm this rule:

while in the case of H0, the correction is below 20%, the
one in h1 is relatively large (27%), because this quantity
does contain a strong infrared singularity: h1 diverges in
the limit M⇡ ! 0, in proportion to 1/M2

⇡ . In fact, the
singular contribution fully dominates the correction. We

conclude that it is meaningful to truncate the chiral ex-
pansion of the Taylor coe�cients at NLO. The invariant
X is approximated with the one-loop result XNLO and
the uncertainties from the omitted higher orders are esti-
mated at 0.3 |XNLO �XLO|. This is on the conservative
side of the rule mentioned above and yields a theoretical
estimate for four of the six coe�cients: H0 = 1.176(53),
h1 = 4.52(36), h2 = 16.4(4.9), h3 = 6.3(1.9) (the esti-
mate used for h3 in particular also covers the compara-
tively small uncertainty in the value of L3). The remain-
ing two are beyond reach of the one-loop representation
– we treat h4 and h5 as free parameters.
The observed Dalitz plot distribution o↵ers a good

check of these estimates: dropping the subtraction con-
stants �0, �1 and ignoring �PT altogether, we obtain
a three-parameter fit to the KLOE Dalitz plot with
�2
exp = 385 for 371 data points. For all three coe�-

cients h1, h2, h3, the fit yields a value in the range esti-
mated above on the basis of �PT. Moreover, along the
line s = u, the resulting representation for the real part
of the amplitude exhibits a zero at sfitA = 1.43M2

⇡ : the
observed Dalitz plot distribution implies the presence of
an Adler zero, as required by a venerable SU(2)⇥SU(2)
low-energy theorem [20] (at leading order of the chiral
expansion, the zero sits at sLOA = 4

3M
2
⇡ , the corrections

of first non-leading order shift it to sNLO
A = 1.40M2

⇡).
The three assumptions formulated above do not imply

that the subtraction constants are real. In fact, beyond
NLO of the chiral expansion, the subtraction constants
get an imaginary part which can be estimated with the
explicit expressions obtained from the two-loop represen-
tation: they do not contain any unknown LECs, and none
of the O(p6) ones. For simplicity, we take ↵0,�0, . . . , �1
to be real. The small changes occurring if the imaginary
parts of the subtraction constants are instead taken from
the two-loop representation barely a↵ect our results.
In our analysis, the recent KLOE data [24] play the

central role. In this experiment, the Dalitz plot distri-
bution of the decay ⌘ ! ⇡+⇡�⇡0 is determined to high
accuracy, bin-by-bin. In the following we restrict our-
selves to an analysis of these data. The results of earlier
experiments [25–27] can readily be included, but do not
have a significant e↵ect on our results [22].
We minimize the sum of two discrepancy functions:

while �2
exp measures the di↵erence between the calculated

and measured Dalitz plot distributions at the 371 data
points of KLOE [24], �2

th represents the sum of the square
of the di↵erences between the values of h1, h2 and h3 used
in the fit and the central theoretical estimates, divided
by the uncertainties attached to these. The minimum
�2 = �2

exp+ �2
th we obtain for the 371 data points is equal

to �2
exp = 380.2, at the parameter values (the subtraction

constants are univocally fixed by these):

h1 = 4.49(14), h2 = 21.2(4.3), h3 = 7.1(1.7),

h4 = 76.4(3.4), h5 = 47.3(5.8) .
(10)

  H0
ChPT = 1 + 0.176 +O p4( )

h1
ChPT = 1

Δηπ

1− 0.21+O p4( )( )

  
h2

ChPT = 1
Δηπ

2 4.9 +O p4( )( )
h3
ChPT = 1

Δηπ
2 1.3 +O p4( )( )

  

χ theo
2 =

hi − hi
ChPT

σ
hi

ChPT

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i=1

3

∑
2

σhiChPT
= 0.3 hi

NLO − hi
LO

  
hi ≡

Hi

H0

⎡

⎣
⎢

⎤

⎦
⎥
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•  Discontinuity of       : by definition 

 
 with            real on the right-hand cut  

•  The left-hand cut is contained in  

•  Determination of             :  
subtract       from the partial wave projection of  
 

•             singularities in the t and u channels, depend on the other   
 Angular averages of the other functions        Coupled equations 
  

ˆ ( )IM s

   disc MI (s)⎡⎣ ⎤⎦ ≡ disc fℓ
I (s)⎡⎣ ⎤⎦

ˆ( ) ( ) ( )I
I If s M s M s= +l

ˆ ( )IM s

ˆ ( )IM s

( )0 1( , , ) ( ) ( ) ...M s t u M s s u M t= + − +

ˆ ( )IM s

Hat functions 

IM

IM ( , , )M s t u

IM
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•  Ex: 
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Hat functions 

( )0 0 0 1 2 1
2 20 2ˆ ( ) 2 ( )
3 9 3

M s M s s M M s zMκ= + − + +

Non trivial angular averages        need to deform the integration 
path to avoid crossing cuts Anisovich & Anselm’66 

where ( ) ( )1

1

1  ( , ) ,
2

n n
I Iz M s dz z M t s z

−
= ∫

cosz θ= scattering angle 



2.3   Computation of the amplitude 

•  What do we know?  

•  The amplitude has an Adler zero: soft pion theorem 
         Amplitude has a zero for :  
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Anisovich & Leutwyler’96  

 Adler’85 

  pπ − → 0
  s = u = 0,  t = Mη

2

  pπ + → 0

s = t = 0,  u = Mη
2

  
s = u = 4

3
Mπ

2 ,  t = Mη
2 +

Mπ
2

3Mπ ≠ 0

SU(2) corrections 

s = t = 4
3
Mπ

2 ,  u = Mη
2 +
Mπ

2

3

s = u 



2.4   Neutral channel : η→ π0 π0 π0  

•  What do we know?  
 

•  We can relate charged and neutral channels 
 
 
 
        Correct formalism should be able to reproduce both charged and     

             neutral channels 
 
•  Ratio of decay width precisely measured 
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( , , ) ( , , ) ( , , ) ( , , )A s t u A s t u A t u s A u s t= + +

  
r =

Γ η → π 0π 0π 0( )
Γ η → π +π −π 0( )  = 1.426 ± 0.026 PDG’19 

 



•  Decay amplitude  

 
 

 
 

 
 

 

 
 

 
   

 

 

 
 

      

 
 

2.4   Neutral Channel : η→ π0 π0 π0  

2

3 1 2A Zη π α→Γ ∝ ∝ + with 
23

1

32 1
3

i

i n

T
Z

Q=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

  α  0.015

 α = −0.0288 ± 0.0012

03nQ M Mη π
≡ −

 Important discrepancy between  
ChPT and experiment!  

Help of a dispersive treatment? 
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•  Decay amplitude  

 
 

 
 

 
 

 

 
 

 
   

 

 

 
 

      

 
 

3.3  Neutral Channel : η→ π0 π0 π0  

2

3 1 2A Zη π α→Γ ∝ ∝ + with 
23

1

32 1
3

i

i n

T
Z

Q=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑

  α  0.015

α = −0.0315 ± 0.0015

03nQ M Mη π
≡ −

 Important discrepancy between  
ChPT and experiment!  

Help of a dispersive treatment? 
 

PDG’16 
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2.5   Dispersive treatment 

•  The Chiral series has convergence problems   
 

 Large ππ  final state interactions  
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−
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2.5   Dispersive treatment 

•  The Chiral series has convergence problems   
 

 Large ππ  final state interactions  

 
 

•  Dispersive treatment :  
–  analyticity, unitarity and crossing symmetry 
–  Take into account all the rescattering effects 
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−
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2.6   Why a new dispersive analysis? 

 

•  Several new ingredients:  
–  New inputs available: extraction ππ phase shifts has improved 

 
 
 

 
–  New experimental programs, precise Dalitz plot measurements 
 
 
 
 
 
–  Many improvements needed in view of very precise data: inclusion of  

‒  Electromagnetic effects (O(e2m)) 

 

‒  Isospin breaking effects 

‒  Inelasticities 
 
 
 
 

 

 

Ditsche, Kubis, Meissner’09 
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Kaminsky et al’01, Garcia-Martin et al’09 

Ananthanarayan et al’01, Colangelo et al’01 
Descotes-Genon et al’01 

CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) 
     

TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) 

BES III (Beijing) 

Gullstrom, Kupsc, Rusetsky’09,  
Schneider, Kubis, Ditsche’11 
 
 Albaladejo & Moussallam’15 



•  The amplitude squared in the neutral channel is  

2.11  Z distribution for η→ π0 π0 π0 decays  

The agreement is excellent between  
our prediction and the data! 
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2.12  Comparison of results for α

Emilie Passemar 79  α = −0.0307 ± 0.0017



Experimental Facilities and Role of JLab 12 
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M. J. Amaryan et al.  
CLAS Analysis Proposal, (2014) 



2.3   Computation of the amplitude 

•  What do we know?  
 

 
 

•  Compute the amplitude using ChPT : the effective theory that describe 
dynamics of the Goldstone bosons (kaons, pions, eta) at low energy 
 
 
 

•  Goldstone bosons interact weakly at low energy and 
Expansion organized in external momenta and quark masses    
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   mu , md ≪ ms < ΛQCD

 Weinberg’s power counting rule 

  p << ΛH = 4πFπ ~ 1 GeV
   
Leff =  Ld

d≥2
∑  , Ld =  O pd( )  , p ≡ q, mq{ }



2.5  Iterative Procedure 

•  Solution linear in the subtraction constants    Anisovich & Leutwyler’96  

 
 
 
 
 

 
  
M (s, t,u) = α 0Mα 0

(s, t,u) + β0Mβ0
(s, t,u) + ... makes the fit much easier  

3 Integral Equations

Numerical solution of the dispersion relation

fix one subtraction
constant to 1,
all others to 0

compute ˆMi with
angular integrals

compute Mi with
dispersive integrals

compute Omnès
functions ⌦

I
l

⇡⇡/K⇡

elastic phase
shifts �Il

convergence?

linear fit of
subtraction

constants to data

matching to �PT:
extract LECs

apply isospin
corrections

experimental
data on F , G
form factors

no

yes

21

			ππ	

Determination of 
subtraction constants:   

fit to data + chiral 
constraints 

Adapted from P. Stoffer’15 
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2.6  Subtraction constants 

•  Extension of the numbers of parameters compared to Anisovich & Leutwyler’96 

 
 

•  In the work of Anisovich & Leutwyler’96 matching to one loop ChPT 
Use of the SU(2) x SU(2) chiral theorem 
       The amplitude has an Adler zero along the line s=u 

 
•  Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III 

      Use the data to directly fit the subtraction constants 
 

•  However normalization to be fixed to ChPT!     
 
 
 

 

  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2
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2.7  Subtraction constants 

•  The subtraction constants are  

 
 
 
 

       Only 6 coefficients are of physical relevance 
 

•  They are determined from combining ChPT with a fit to KLOE Dalitz plot 

•  Taylor expand the dispersive MI   
Subtraction constants         Taylor coefficients 

�
�

•  Gauge freedom in the decomposition of M(s,t,u) 

P0 (s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

P2(s) = α 2 + β2s + γ 2s
2 + δ 0s

3

  M0(s) = A0 + B0s +C0s
2 + D0s

3 + ...

  M1(s) = A1 + B1s +C1s
2 + ...

  M2(s) = A2 + B2s +C2s
2 + D2s

3 +
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2.7  Subtraction constants 

•  Build some gauge independent combinations of Taylor coefficients 
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3

Aphys = KÃ. As discussed below, the prediction ob-
tained for the branching ratio of the two modes provides
a stringent test of this approximate formula: the factor
|K|2 barely a↵ects the Dalitz plot distribution because it
is nearly constant, but it di↵ers from unity and therefore
a↵ects the rate. Details will be given in [22].

The experimental results on the Dalitz plot distribu-
tion do not su�ce to determine all subtraction constants.
In particular, the overall normalization of the amplitude
is not constrained by these. We use the one-loop repre-
sentation of �PT to constrain the admissible range of the
subtraction constants. To do this we consider the Taylor
coe�cients of the functions M0(s), M1(s) and M2(s):

MI(s) = AI +BIs+ CIs
2 +DIs

3 + . . . (8)

These coe�cients also depend on the choice made in the
decomposition (2), but the combinations

H0 =A0 +
4

3
A2 + s0

✓
B0 +

4

3
B2

◆

H1 =A1 +
1

9
(3B0 � 5B2)� 3C2s0

H2 =C0 +
4

3
C2, H3 = B1 + C2

H4 =D0 +
4

3
D2, H5 = C1 � 3D2

(9)

are independent thereof (s0 stands for the value of the
Mandelstam variables at the center of the Dalitz plot:
s0 = 1

3M
2
⌘ + M2

⇡). We use the constant H0 to param-
eterize the normalization of the amplitude and describe
the relative size of the subtraction constants by means
of the variables hI = HI/H0. Specifying the 6 threshold
coe�cients H0, h1, . . . , h5 is equivalent to specifying the
6 subtraction constants ↵0, �0, . . ., �1.

At leading order of the chiral expansion, only HLO
0 = 1

and hLO
1 = 1/(M2

⌘ �M2
⇡) = 3.56 are di↵erent from zero

(throughout, dimensionful quantities are given in GeV
units). The NLO representation yields corrections for
these two coe�cients as well as the leading terms in the
chiral expansion of h2 and h3. The one-loop formulae
can be expressed in terms of the masses, the decay con-
stants F⇡, FK and the low energy constant L3, which only
contributes to H3. We are using the recently improved
determination L3 = �2.65(46) · 10�3 of [23], so that the
one-loop representation does not contain any unknowns.

Experience with �PT indicates that, unless the quan-
tity of interest contains strong infrared singularities, sub-
sequent terms in the chiral perturbation series based on
SU(3)⇥ SU(3) are smaller by a factor of 20� 30%. The
values HNLO

0 = 1.176, hNLO
1 = 4.52 confirm this rule:

while in the case of H0, the correction is below 20%, the
one in h1 is relatively large (27%), because this quantity
does contain a strong infrared singularity: h1 diverges in
the limit M⇡ ! 0, in proportion to 1/M2

⇡ . In fact, the
singular contribution fully dominates the correction. We

conclude that it is meaningful to truncate the chiral ex-
pansion of the Taylor coe�cients at NLO. The invariant
X is approximated with the one-loop result XNLO and
the uncertainties from the omitted higher orders are esti-
mated at 0.3 |XNLO �XLO|. This is on the conservative
side of the rule mentioned above and yields a theoretical
estimate for four of the six coe�cients: H0 = 1.176(53),
h1 = 4.52(36), h2 = 16.4(4.9), h3 = 6.3(1.9) (the esti-
mate used for h3 in particular also covers the compara-
tively small uncertainty in the value of L3). The remain-
ing two are beyond reach of the one-loop representation
– we treat h4 and h5 as free parameters.
The observed Dalitz plot distribution o↵ers a good

check of these estimates: dropping the subtraction con-
stants �0, �1 and ignoring �PT altogether, we obtain
a three-parameter fit to the KLOE Dalitz plot with
�2
exp = 385 for 371 data points. For all three coe�-

cients h1, h2, h3, the fit yields a value in the range esti-
mated above on the basis of �PT. Moreover, along the
line s = u, the resulting representation for the real part
of the amplitude exhibits a zero at sfitA = 1.43M2

⇡ : the
observed Dalitz plot distribution implies the presence of
an Adler zero, as required by a venerable SU(2)⇥SU(2)
low-energy theorem [20] (at leading order of the chiral
expansion, the zero sits at sLOA = 4

3M
2
⇡ , the corrections

of first non-leading order shift it to sNLO
A = 1.40M2

⇡).
The three assumptions formulated above do not imply

that the subtraction constants are real. In fact, beyond
NLO of the chiral expansion, the subtraction constants
get an imaginary part which can be estimated with the
explicit expressions obtained from the two-loop represen-
tation: they do not contain any unknown LECs, and none
of the O(p6) ones. For simplicity, we take ↵0,�0, . . . , �1
to be real. The small changes occurring if the imaginary
parts of the subtraction constants are instead taken from
the two-loop representation barely a↵ect our results.
In our analysis, the recent KLOE data [24] play the

central role. In this experiment, the Dalitz plot distri-
bution of the decay ⌘ ! ⇡+⇡�⇡0 is determined to high
accuracy, bin-by-bin. In the following we restrict our-
selves to an analysis of these data. The results of earlier
experiments [25–27] can readily be included, but do not
have a significant e↵ect on our results [22].
We minimize the sum of two discrepancy functions:

while �2
exp measures the di↵erence between the calculated

and measured Dalitz plot distributions at the 371 data
points of KLOE [24], �2

th represents the sum of the square
of the di↵erences between the values of h1, h2 and h3 used
in the fit and the central theoretical estimates, divided
by the uncertainties attached to these. The minimum
�2 = �2

exp+ �2
th we obtain for the 371 data points is equal

to �2
exp = 380.2, at the parameter values (the subtraction

constants are univocally fixed by these):

h1 = 4.49(14), h2 = 21.2(4.3), h3 = 7.1(1.7),

h4 = 76.4(3.4), h5 = 47.3(5.8) .
(10)

  H0
ChPT = 1 + 0.176 +O p4( )

h1
ChPT = 1

Δηπ

1− 0.21+O p4( )( )

  
h2

ChPT = 1
Δηπ

2 4.9 +O p4( )( )
h3
ChPT = 1

Δηπ
2 1.3 +O p4( )( )

  

χ theo
2 =

hi − hi
ChPT

σ
hi

ChPT

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟i=1

3

∑
2

σhiChPT
= 0.3 hi

NLO − hi
LO

  
hi ≡

Hi

H0

⎡

⎣
⎢

⎤

⎦
⎥



Isospin breaking corrections 

•  Dispersive calculations in the isospin limit        to fit to data one has to include 
isospin breaking corrections  

 
 
 

•                                                              with MDKM :  amplitude at one loop 
                 with O(e2m) effects 

 
 

                     physical boundaries 
 

 

Mc/n(s, t,u) = Mdisp(s, t,u)
MDKM (s, t,u)
!MGL(s, t,u)

MGL: amplitude at one loop in  
        the isospin limit  

Gasser & Leutwyler’85 

Ditsche, Kubis, Meissner’09 

Out[392]=

!1.0 !0.5 0.5 1.0 Xn

!1.0

!0.5

0.5

1.0

Yn

Kinematic map:  
isospin symmetric boundaries  

à       

Neutral channel 

  
!MGL MGL
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Xn = 3

T2 −T1

Qn

  
Yn =

3T3

Qn

−1

Qn ≡ Mη − 3Mπ 0



2.15  Prospects 
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2.5  η → 3π and light quark masses 
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 H. Leutwyler 

51 

Experimental Measurements of !�3π  

Exp. 3π0 

Events 
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π+ π- π0 

Events 
(106) 

Total world data 
(include prel. WASA 

and prel. KLOE) 

6.5 6.0 

GlueX+PrimEx-η
+JEF 

20 19.6 

$  Existing data from the low energy 
    facilities are sensitive to the detection  
    threshold effects 
  
$  JEF at high energy has uniform detection  
      efficiency over Dalitz phase space 

$  JEF will offer large statistics and improved 
systematics 
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      efficiency over Dalitz phase space 
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•  Existing data from the low energy facilities are 
sensitive to the detection threshold effects 

•  JEF at high energy has uniform detection 
efficiency over Dalitz phase space  

•  JEF will offer large statistics and different 
systematics  



2.14  Comparison with Lattice 
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3.2   Theoretical Framework  

•  U(3) ChPT with resonances at one-loop 
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Structure of the decay amplitude

⌘′ → ⌘⇡⇡: Scalar Resonance and loop contributions
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Introduction: framework and motivation

Large-NC U(3) ChPT

Axial Anomaly is absent; ⌘
1

as the ninth Goldstone boson

Degrees of freedom: ⇡±,0, K±, K0, ¯K0 and the ⌘ and ⌘′

Kaiser and Leutwyler, EPJC 17, 623 (2000)
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Final-state interaction through  
the N/D unitarization method  
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3.2   Theoretical Framework  

•  Unitarity relations 

 
 
•  A dispersive analysis also exists by Isken et al.’17 but here we include 

D waves as well as kaon loops 
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Fits to experimental data Unitarization of the ChPT amplitude
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