

$\eta \rightarrow 3\pi$ and the light quark mass determination

Emilie Passemar epassema@indiana.edu

Indiana University/Jefferson Laboratory/IFIC Valencia

Modern Techniques in Hadron Spectroscopy Ruhr University Bochum, Germany, July 15 -27, 2024

Based on Phys. Rev. Lett. 118 (2017) no.2, 022001, Eur.Phys.J. C78 (2018) no.11, 947 G. Colangelo, S. Lanz, E.P. and H. Leutwyler

Phys. Rept. 945 (2022), 1-105, L. Gan, B. Kubis, E.P., S. Tulin

- 1. Introduction and Motivation
- 2. Why is it interesting to study $\eta \rightarrow 3\pi$?
- 3. Computation of the Amplitude
- 4. Fits to the Dalitz plots and Results
- 5. Conclusion and Outlook

1. Introduction and Motivation

1.1 Why is it interesting to study η and η' physics?

- Quantum numbers I^G J^{PC} = 0⁺ 0⁻⁺
 - C, P eigenstates, all additive quantum numbers are zero
 - flavour-conserving laboratory for symmetry tests
- η: pseudo-Goldstone boson,

$$M_{\eta} = 547.862(17) \text{ MeV}$$
 , $\Gamma_{\eta} = 1.31 \text{ keV}$

All decay modes forbidden at leading order by *symmetries* (C, P, angular momentum, isospin/G-parity...)

- η' : not a Goldstone boson due to U(1)_A anomaly $M_{\eta'} = 957.78(6)$ MeV $\Gamma_{\eta'} = 196$ keV
- Theoretical methods:
 - (large-N_c) chiral perturbation theory, RChPT
 - dispersion relations to resum final state interactions
 - Vector-meson dominance

1.1 Why is it interesting to study η and η' physics?

 In the study of η and η' physics, large amount of data have been collected:

GlueX

More to come: JEF, REDTOP (Elam et al'22), LHCb?, JLab@22GeV

1.2 Experimental Facilities for studying η and η'

Why is it interesting to study η and η' physics?

• In the study of η and η' physics, large amount of data have been collected:

GlueX

More to come: JEF, REDTOP (Elam et al'22), LHCb?, JLab@22GeV

- Unique opportunity:
 - Test chiral dynamics at low energy
 - Extract fundamental parameters of the Standard Model: ex: light quark masses
 - Study of fundamental symmetries: P & CP and C & CP violation

Rich physics program at η , η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2)_μ
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

	Channel	Expt. branching ratio	Discussion	
	$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, $\eta - \eta'$ mixing	
	$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$	
1	$\eta o \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson, light Higgs scalars	
	$\eta ightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)	
	$\eta \to 4\gamma$	$< 2.8 \times 10^{-4}$	< 10 ⁻¹¹ [52]	
	$\eta \to \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d$, <i>C/CP</i> violation, light Higgs scalars	
	$\eta \to \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation	
1	$\eta ightarrow \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs	
	$\eta ightarrow e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic <i>X</i> boson	
	$\eta ightarrow \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon	
	$\eta \rightarrow e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays	
	$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	eory input for $(g - 2)_{\mu}$, BSM weak decays, <i>P/CP</i> violation	
	$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	
J	$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation, ALPs theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, P/CP violation, ALPs	
]	$\eta \to \pi^+ \pi^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$		
	$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$	
	$\eta \to e^+ e^- \mu^+ \mu^-$	$<1.6\times10^{-4}$	theory input for $(g-2)_{\mu}$	
	$\eta \to \mu^+ \mu^- \mu^+ \mu^-$	$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
	$\eta ightarrow \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only	
	$\eta \to \pi^{\pm} e^{\mp} \nu_e$	$< 1.7 \times 10^{-4}$	second-class current	
	$\eta ightarrow \pi^+ \pi^-$	$< 4.4 \times 10^{-6}$	P/CP violation Gan, Kubis, E. P.,	
	$\eta \to 2\pi^0$	$< 3.5 \times 10^{-4}$	P/CP violation Tulin'22	
	$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	<i>P/CP</i> violation	

Rich physics program at η,η' factories

Standard Model highlights

- Theory input for light-by-light scattering for (g-2)_μ
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P,CP violation
- C,CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- Scalars
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

	Channel	Expt. branching ratio	Discussion	
	$\eta \rightarrow 2\gamma$	39.41(20)%	chiral anomaly, η – η' mixing	
	$\eta \rightarrow 3\pi^0$	32.68(23)%	$m_u - m_d$	
וו	$\eta o \pi^0 \gamma \gamma$	$2.56(22) \times 10^{-4}$	χ PT at $O(p^6)$, leptophobic <i>B</i> boson, light Higgs scalars	
	$\eta ightarrow \pi^0 \pi^0 \gamma \gamma$	$< 1.2 \times 10^{-3}$	χ PT, axion-like particles (ALPs)	
	$\eta \to 4\gamma$	$< 2.8 \times 10^{-4}$	< 10 ⁻¹¹ [52]	
	$\eta ightarrow \pi^+ \pi^- \pi^0$	22.92(28)%	$m_u - m_d$, <i>C</i> / <i>CP</i> violation,	
			light Higgs scalars	
	$\eta \to \pi^+ \pi^- \gamma$	4.22(8)%	chiral anomaly, theory input for singly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation	
1	$\eta ightarrow \pi^+ \pi^- \gamma \gamma$	$< 2.1 \times 10^{-3}$	χ PT, ALPs	
	$\eta \to e^+ e^- \gamma$	$6.9(4) \times 10^{-3}$	theory input for $(g - 2)_{\mu}$, dark photon, protophobic <i>X</i> boson	
	$\eta \to \mu^+ \mu^- \gamma$	$3.1(4) \times 10^{-4}$	theory input for $(g - 2)_{\mu}$, dark photon	
	$\eta \rightarrow e^+ e^-$	$< 7 \times 10^{-7}$	theory input for $(g - 2)_{\mu}$, BSM weak decays	
	$\eta \to \mu^+ \mu^-$	$5.8(8) \times 10^{-6}$	theory input for $(g - 2)_{\mu}$, BSM weak decays, <i>P/CP</i> violation	
	$\eta \to \pi^0 \pi^0 \ell^+ \ell^-$		C/CP violation, ALPs	
1	$\eta \to \pi^+ \pi^- e^+ e^-$	$2.68(11) \times 10^{-4}$	theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P</i> / <i>CP</i> violation, ALPs	
	$\eta \to \pi^+ \pi^- \mu^+ \mu^-$ < 3.6 × 10 ⁻⁴ theory input for doubly-virtual TFF a <i>P/CP</i> violation, ALPs		theory input for doubly-virtual TFF and $(g - 2)_{\mu}$, <i>P/CP</i> violation, ALPs	
	$\eta \to e^+ e^- e^+ e^-$	$2.40(22) \times 10^{-5}$	theory input for $(g-2)_{\mu}$	
	$\eta \rightarrow e^+ e^- \mu^+ \mu^-$	$< 1.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
		$< 3.6 \times 10^{-4}$	theory input for $(g-2)_{\mu}$	
	$\eta ightarrow \pi^+ \pi^- \pi^0 \gamma$	$< 5 \times 10^{-4}$	direct emission only	
	$\eta \to \pi^{\pm} e^{\mp} v_e$	$< 1.7 \times 10^{-4}$	second-class current	
	$\eta ightarrow \pi^+ \pi^-$	$< 4.4 \times 10^{-6}$	<i>P/CP</i> violation Gan, Kubis, E. P.,	
	$\eta \rightarrow 2\pi^0$	$< 3.5 \times 10^{-4}$	D/CD violation	
	$\eta \to 4\pi^0$	$< 6.9 \times 10^{-7}$	P/CP violation Tulin'22	

1.3 Analytical methods for light quark spectroscopy

• In the study of hadron spectroscopy, large amount of very precise data on meson physics have been and will be collected:

KLOE & KLOE-II, BES, A1, A2@MAMI, CLAS, GlueX, JEF, COMPASS, LHCb, PANDA,...

They are background for searches of new states

- Use Isobar model to describe the data
 Improve to include FSI
- Build an amplitude with physical properties:

 → Analyticity, Unitarity and Crossing Symmetry:
 → Dispersion Relations
 - \rightarrow Chiral constraints at LE
 - \rightarrow Regge behavior at HE

2. Why is it interesting to study $\eta \rightarrow 3\pi$?

2.1 Light quark masses

- Fundamental unknowns of the the QCD Lagrangian In the following, consider the 3 light flavours u,d,s
- High precision physics at low energy as a key of new physics?
 m_d m_u: small isospin breaking corrections but to be taken into account for high precision physics
- No direct access to the quarks due to confinement!

2.2 Meson masses from ChPT

- $m_{u,d,s} \ll \Lambda_{QCD}$: masses treated as small perturbations \implies expansion in powers of m_a
- Gell-Mann-Oakes-Renner relations:

(meson mass)² = (spontaneous ChSB) x (explicit ChSB) $\langle \overline{qq} \rangle$

• From LO ChPT without e.m effects:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

Electromagnetic effects: Dashen's theorem

 $\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{em}-\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{em}=O\left(e^{2}m\right)$ Dashen'69

2.2 Meson masses from ChPT

- $m_{u,d,s} \ll \Lambda_{QCD}$: masses treated as small perturbations \implies expansion in powers of m_a
- Gell-Mann-Oakes-Renner relations:

(meson mass)² = (spontaneous ChSB) x (explicit ChSB)

• From LO ChPT without e.m effects:

$$egin{aligned} M_{\pi^+}^2 &= (m_{ extsf{u}} + m_{ extsf{d}}) \, B_0 + O(m^2) \ M_{K^+}^2 &= (m_{ extsf{u}} + m_{ extsf{s}}) \, B_0 + O(m^2) \ M_{K^0}^2 &= (m_{ extsf{d}} + m_{ extsf{s}}) \, B_0 + O(m^2) \end{aligned}$$

• Electromagnetic effects: *Dashen's theorem*

$$\left(M_{K^{+}}^{2}-M_{K^{0}}^{2}\right)_{em}-\left(M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2}\right)_{em}=O\left(e^{2}m\right)$$

 $M_{\pi^{0}}^{2} = B_{0} (m_{u} + m_{d})$ $M_{\pi^{+}}^{2} = B_{0} (m_{u} + m_{d}) + \Delta_{em}$ $M_{K^{0}}^{2} = B_{0} (m_{d} + m_{s})$ $M_{K^{+}}^{2} = B_{0} (m_{u} + m_{s}) + \Delta_{em}$ Dashen '69

m_

2 unknowns B_0 and Δ_{em}

Quark mass ratios

Weinberg'77

$$\frac{m_u}{m_d} \stackrel{\text{\tiny LO}}{=} \frac{M_{K^+}^2 - M_{K^0}^2 + 2M_{\pi^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 0.56 \,,$$

$$\frac{m_s}{m_d} \stackrel{\text{\tiny LO}}{=} \frac{M_{K^+}^2 + M_{K^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 20.2$$

2.3 Lattice QCD

- Compute the quark masses from first principles
 - \implies **L** _{ocp} on the lattice
 - QCD Lagrangian as input
 - Calculate the spectrum of the low-lying states for different quark masses
 - Tune the values of the quark masses such that the QCD spectrum is reproduced
 - Set the scale by adding an external input or extract quark mass ratios
- NB: computation in the isospin limit: $m_u = m_d = \hat{m}_d$
- To get m_u − m_d, needs handle on e.m. effects: <sup>m_u+m_d/2
 > Input from phenomenology (e.g., Kaon mass difference)
 </sup>
 - Put photons on the lattice

2.4 Extracting light quark masses from $\eta \rightarrow 3\pi$

• Decay forbidden by isospin symmetry $\eta(I^{G} = 0^{+}) \rightarrow 3\pi(I^{G} = 1^{-})$

$$A = \left(m_{u} - m_{d} \right) A_{1} + \alpha_{em} A_{2}$$

- *α_{em}* effects are small Sutherland'66, Bell & Sutherland'68 Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09
- Decay rate measures the size of isospin breaking $(m_u m_d)$ in the SM:

$$L_{QCD} \rightarrow L_{IB} = -\frac{m_u - m_d}{2} \left(\overline{u} u - \overline{d} d \right)$$

$$\Rightarrow$$
 Unique access to $(m_u - m_d)$

Decays of η

• η decay from PDG:

 $M_{\eta} = 547.862(17) \text{ MeV}$

η DECAY MODES						
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level			
		Neutral modes				
Γ_1	neutral modes	(72.12±0.34) %	S=1.2			
Γ2	2γ	(39.41 ± 0.20) %	S=1.1			
Г ₃	$3\pi^0$	(32.68±0.23) %	S=1.1			
		Charged modes				
Г ₈	charged modes	(28.10 ± 0.34) %	S=1.2			
Γg	$\pi^+\pi^-\pi^0$	(22.92 ± 0.28) %	S=1.2			
Γ ₁₀	$\pi^+\pi^-\gamma$	(4.22±0.08) %	S=1.1			

2.5 Definitions

$$\begin{array}{c} \eta \text{ decay: } \eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \\ \hline & \eta \text{ decay: } \eta \rightarrow \pi^{+} \pi^{-} \pi^{0} \\ \hline & \sqrt{p_{\eta}} \\ \hline & \pi^{-} p_{\pi^{-}} \\ \hline & \sqrt{p_{\eta}} \\ \hline & \pi^{-} p_{\pi^{-}} \\ \hline & \sqrt{p_{\eta}} \\ \hline & \sqrt{p$$

• In the following, extraction of Q from $\eta \to \pi^+ \pi^- \pi^0$

$$\Gamma_{\eta \to \pi^{+}\pi^{-}\pi^{0}} = \frac{1}{Q^{4}} \frac{M_{K}^{4}}{M_{\pi}^{4}} \frac{\left(M_{K}^{2} - M_{\pi}^{2}\right)^{2}}{6912\pi^{3}F_{\pi}^{4}M_{\eta}^{3}} \int_{s_{\min}}^{s_{\max}} ds \int_{u_{-}(s)}^{u_{+}(s)} du \left|M(s,t,u)\right|^{2}$$
Determined from experiment
$$Determined from: \cdot Dispersive calculation \cdot Dispersive calculation \cdot ChPT$$

$$\left[Q^{2} = \frac{m_{s}^{2} - \hat{m}_{u}^{2}}{m_{d}^{2} - m_{u}^{2}}\right] \left[\widehat{m} = \frac{m_{d} + m_{u}}{2}\right]$$

• Aim: Compute M(s,t,u) with the *best accuracy*

• Mass formulae to second chiral order Gasser & Leutwyler'85

$$\frac{M_{K}^{2}}{M_{\pi}^{2}} = \frac{m_{s} + \hat{m}}{2\hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$

$$\frac{M_{K^{0}}^{2} - M_{K^{+}}^{2}}{M_{K}^{2} - M_{\pi}^{2}} = \frac{m_{d} - m_{u}}{m_{s} - \hat{m}} \left[1 + \Delta_{M} + \mathcal{O}(m^{2}) \right]$$
with $\Delta_{M} = \frac{8(M_{K}^{2} - M_{\pi}^{2})}{F_{\pi}^{2}} (2L_{8} - L_{5}) + \chi$ -logs
• The same O(m) correction appears in both ratios
$$\begin{bmatrix} \hat{m} \equiv \frac{m_{d} + m_{u}}{2} \\ m \equiv \frac{m_{d} + m_{u}}{2} \end{bmatrix}$$

$$\frac{Q^{2} \equiv \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} = \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2} - M_{\pi}^{2}}{(M_{K^{0}}^{2} - M_{K^{+}}^{2})_{OCD}} \left[1 + O(m_{q}^{2}, e^{2}) \right]$$

Very Interesting quantity to determine since Q² does not receive any correction at NLO!

The same O(m) correction appears in both ratios
 Take the double ratio

$$Q^{2} \equiv \frac{m_{s}^{2} - \hat{m}^{2}}{m_{d}^{2} - m_{u}^{2}} = \frac{M_{K}^{2}}{M_{\pi}^{2}} \frac{M_{K}^{2} - M_{\pi}^{2}}{\left(M_{K^{0}}^{2} - M_{K^{+}}^{2}\right)_{QCD}} \left[1 + O(m_{q}^{2}, e^{2})\right]$$

Very Interesting quantity to determine since Q² does not receive any correction at NLO!

• Using Dashen's theorem and inserting Weinberg LO values

$$\mathsf{Q}_{D}^{2} \equiv rac{(M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}+M_{\pi^{0}}^{2})(M_{K^{0}}^{2}+M_{K^{+}}^{2}-M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2})}{4M_{\pi^{0}}^{2}(M_{K^{0}}^{2}-M_{K^{+}}^{2}+M_{\pi^{+}}^{2}-M_{\pi^{0}}^{2})}$$

• From Q \implies Ellipse in the plane m_s/m_d , m_u/m_d Leutwyler's ellipse

• Estimate of Q:
$$B_0(m_u - m_d) = \frac{1}{Q^2} \frac{M_K^2(M_K^2 - M_\pi^2)}{M_\pi^2} + O(M^3)$$

From corrections to the Dashen's theorem

$$B_0(m_d - m_u) = (M_{K^+}^2 - M_{K^0}^2) - (M_{\pi^+}^2 - M_{\pi^0}^2) + O(e^2m)$$

The corrections can be large due to e^2m_s corrections, difficult to estimate due to LECs

> From
$$\eta \to \pi^+ \pi^- \pi^0$$
:
$$A(s,t,u) = -\frac{1}{Q^2} \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{3\sqrt{3}F_\pi^2} M(s,t,u)$$

 In the following, compute the normalized amplitude M(s,t,u) with the best accuracy extraction of Q

• Use Q to determine m_u and m_d from lattice determinations of m_s and \hat{m}

$$\implies m_{u} = \hat{m} - \frac{m_{s}^{2} - \hat{m}^{2}}{4\hat{m}Q^{2}} \text{ and } m_{d} = \hat{m} + \frac{m_{s}^{2} - \hat{m}^{2}}{4\hat{m}Q^{2}}$$

• From lattice determinations of m_s and $\hat{m} + Q$

$$\implies$$
 Light quark masses: m_u , m_d , m_s

3. Computation of the Amplitude

- What do we know?
- Compute the amplitude using ChPT : the effective theory that describe dynamics of the Goldstone bosons (kaons, pions, eta) at low energy
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_{d}, \mathcal{L}_{d} = \mathcal{O}(p^{d}), p \equiv \{q, m_{q}\}$$

$$p \ll \Lambda_{_H} = 4\pi F_{_\pi} \sim 1 \text{ GeV}$$

3.2 Chiral Perturbation Theory

- What do we know?
- Compute the amplitude using ChPT :

NLO:Gasser & Leutwyler'85

LO: Osborn, Wallace'70

NNLO: Bijnens & Ghorbani'07

The Chiral series has convergence problems

Anisovich & Leutwyler'96

3.3 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

3.4 Dispersive treatment

• The Chiral series has convergence problems

3.4 Dispersive treatment

• The Chiral series has convergence problems

- Dispersive treatment :
 - analyticity, unitarity and crossing symmetry
 - Take into account all the rescattering effects

3.5 Why a new dispersive analysis?

- Several new ingredients:
 - New inputs available: extraction $\pi\pi$ phase shifts has improved

Ananthanarayan et al'01, Colangelo et al'01 Descotes-Genon et al'01 Kaminsky et al'01, Garcia-Martin et al'09

 New experimental programs, precise Dalitz plot measurements *TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)*

- Many improvements needed in view of very precise data: inclusion of
 - Electromagnetic effects (O(e²m)) Ditsche, Kubis, Meissner'09
 - Isospin breaking effects

3.6 Method

Three Pions

3.7 Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- \succ M_I isospin *I* rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- ➢ Main two body rescattering corrections inside M₁

3.7 Method: Representation of the amplitude

Decomposition of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- $> M_{I}$ isospin / rescattering in two particles
- > Amplitude in terms of S and P waves \implies exact up to NNLO ($\mathcal{O}(p^6)$)
- \succ Main two body rescattering corrections inside M₁
- Functions of only one variable with only right-hand cut of the partial wave \longrightarrow disc $M_I(s) = disc f_1^I(s)$
- Elastic unitarity Watson's theorem

disc $f_1^I(s) \propto t_1^*(s) f_1^I(s)$ with $t_1(s)$ partial wave of elastic $\pi\pi$ scattering

3.7 Method: Representation of the amplitude

- Knowing the discontinuity of $M_I \Longrightarrow$ write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle

$$\implies M_I(s) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{\infty} \frac{disc[M_I(s')]}{s' - s - i\varepsilon} ds'$$

 M_I can be reconstructed everywhere from the knowledge of $disc[M_I(s)]$

• If M_I doesn't converge fast enought for $|s| \rightarrow \infty \implies$ subtract the dispersion relation

$$M_{I}(s) = P_{n-1}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{disc[M_{I}(s')]}{(s'-s-i\varepsilon)} P_{n-1}(s) \text{ polynomial}$$

3.7 Representation of the amplitude

• **Decomposition** of the amplitude as a function of isospin states

$$M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)$$

• Unitarity relation:

$$disc\left[M_{\ell}^{I}(s)\right] = \rho(s)t_{\ell}^{*}(s)\left(M_{\ell}^{I}(s) + \hat{M}_{\ell}^{I}(s)\right)$$

• Relation of dispersion to reconstruct the amplitude everywhere:

$$M_{I}(s) = \Omega_{I}(s) \left(\frac{P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds'}{s'^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| (s' - s - i\varepsilon)}} \right) \qquad \left[\Omega_{I}(s) = \exp\left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{\infty} ds' \frac{\delta_{I}(s')}{s'(s' - s - i\varepsilon)}\right) \right]$$
Omnès function

Gasser & Rusetsky'18

P_I(s) determined from a fit to NLO ChPT + experimental Dalitz plot

4. Fits to the Dalitz plots and Results

4.1 Isospin breaking corrections

Dispersive calculations in the isospin limit

 to fit to data one has to include
 isospin breaking corrections

•
$$M_{c/n}(s,t,u) = M_{disp}(s,t,u) \frac{M_{DKM}(s,t,u)}{\tilde{M}_{GL}(s,t,u)}$$
 with M_{DKM} : amplitude at one loop with $\mathcal{O}(e^2m)$ effects
 $Ditsche, Kubis, Meissner'09$

$$M_{GL}$$
: amplitude at one loop in the isospin limit
$$Gasser \& Leutwyler' 85$$
Kinematic map: isospin symmetric boundaries
$$M_{GL} \rightarrow \tilde{M}_{GL}$$

$$M_{GL} \rightarrow \tilde{M}_{GL}$$

4.2 $\eta \rightarrow 3\pi$ Dalitz plot

In the charged channel: experimental data from MASA KIOE PESIII

4.3 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

• The amplitude along the line s = u :

4.3 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ decays

• The amplitude along the line t = u :

4.4 Z distribution for $\eta \rightarrow \pi^0 \pi^0 \pi^0$ decays

• The amplitude squared in the neutral channel is

Comparison of results for α

4.5 Quark mass ratio

Experimental systematics needs to be taken into account

4.5 Light quark masses

• Smaller values for Q \implies smaller values for m_s/m_d and m_u/m_d than LO ChPT

4.5 Light quark masses

4.6 Prospects

Uncertainties in the quark mass ratio ۰

Gan, Kubis, E. P., Tulin'22

4.7 Expected Impact of JLab 22 GeV program

A New Proposal: REDTOP

Another New Proposal: eta-Factory at HIAF

L.Gan@QNP2024

HIAF, Huizhou, China

arXiv:2407.00874v1

up to ~10¹³ η per year

5. Conclusion and Outlook

5.1 Conclusion

- η and η' allows to study the fundamental properties of QCD and test the SM
 - Extraction of fundamental parameters of the SM,
 - \rightarrow e.g. light quark masses
 - Study of chiral dynamics
 - Study of CP violation
- To studies η and η' with the best precision: Development of amplitude analysis techniques consistent with analyticity, unitarity, crossing symmetry dispersion relations allow to take into account *all rescattering effects* being as model independent as possible combined with ChPT Provide parametrization for experimental studies
- In this talk, illustration with $\eta \rightarrow 3\pi$ and extraction of the light quark masses
- Many more topics could be explored with η and η'

Gan, Kubis, E. P., Tulin'22

5.2 Outlook

- New η and η' programs JEF, REDTOP and HIEPA Gan, Kubis, E. P., Tulin'22
- In our opinion the most promising channels to study:

Decay channel	Standard Model	Discrete symmetries	Light BSM particles
$\eta o \pi^+ \pi^- \pi^0$	light quark masses	<i>C/CP</i> violation	scalar bosons (also η')
$\eta^{(\prime)} o \gamma \gamma$	η – η' mixing, precision partial widths		
$\eta^{(\prime)} ightarrow \ell^+ \ell^- \gamma$	$(g - 2)_{\mu}$		Z' bosons, dark photon
$\eta ightarrow \pi^0 \gamma \gamma$	higher-order χ PT, scalar dynamics		$U(1)_B$ boson, scalar bosons
$\eta^{(\prime)} ightarrow \mu^+ \mu^-$	$(g-2)_{\mu}$, precision tests	CP violation	
$\eta ightarrow \pi^0 \ell^+ \ell^-$		<i>C</i> violation	scalar bosons
$\eta^{(\prime)} \to \pi^+ \pi^- \ell^+ \ell^-$	$(g - 2)_{\mu}$		ALPs, dark photon
$\eta^{(\prime)} \to \pi^0 \pi^0 \ell^+ \ell^-$		C violation	ALPs

- Synergies between different physics:
 - Standard Model precision analyses
 - Discrete symmetry tests
 - Search for light BSM particles

6. Back-up

Studying C & CP violation with $\eta \rightarrow 3\pi$ asymetries

60

Studying C & CP violation with $\eta \rightarrow 3\pi$ asymetries

• Asymmetries constrained to the *permille* level

Measurement of $\eta \rightarrow 3\pi$

More information in the charged compared to the neutral channel
 neutral channel sum over isospin:

A(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)

Only one Dalitz plot parameter determined $\alpha \implies$

$$\left|A_n(s,t,u)\right|^2 = N\left(1+2\alpha Z\right)$$

4.4 Dispersion Relations for the $M_{I}(s)$

•
$$M_0(s) = \Omega_0(s) \left(\alpha_0 + \beta_0 s + \gamma_0 s^2 + \frac{s^3}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^3} \frac{\sin \delta_0^0(s') \hat{M}_0(s')}{|\Omega_0(s')| (s' - s - i\varepsilon)} \right)$$

Omnès function

Similarly for M_1 and M_2

- Four subtraction constants to be determined: $\alpha_0,\,\beta_0,\,\gamma_0$ and one more in $M_1\,(\beta_1)$
- Inputs needed for these and for the $\pi\pi$ phase shifts δ_{I}^{I}
 - M_0 : $\pi\pi$ scattering, ℓ =0, I=0
 - M_1 : $\pi\pi$ scattering, l=1, l=1
 - M_2 : $\pi\pi$ scattering, ℓ =0, I=2
- Solve dispersion relations numerically by an iterative procedure Emilie Passemar

Corrections to Dashen's theorem

• Dashen's Theorem

$$\left(M_{K^{+}}^{2} - M_{K^{0}}^{2}\right)_{\text{em}} = \left(M_{\pi^{+}}^{2} - M_{\pi^{0}}^{2}\right)_{\text{em}} \implies \left(M_{K^{+}}^{2} - M_{K^{0}}^{2}\right)_{\text{em}} = 1.3 \text{ MeV}$$

- With higher order corrections
 - Lattice : $(M_{K^+} M_{K^0})_{em} = 1.9 \text{ MeV}, Q = 22.8$ Ducan et al.'96

• ENJL model:
$$(M_{K^+} - M_{K^0})_{em} = 2.3 \text{ MeV}, Q = 22$$

Bijnens & Prades'97

- VMD: $(M_{K^+} M_{K^0})_{em} = 2.6 \text{ MeV}, Q = 21.5$
- Donoghue & Perez'97
- Sum Rules: $(M_{K^+} M_{K^0})_{em} = 3.2 \text{ MeV}, Q = 20.7$

Anant & Moussallam'04

Update $\implies Q = 20.7 \pm 1.2$ Kastner & Neufeld'07

1.1 Light quark masses

- Fundamental unknowns of the the QCD Lagrangian In the following, consider the 3 light flavours u,d,s
- High precision physics at low energy as a key of new physics?
 m_d m_u: small isospin breaking corrections but to be taken into account for high precision physics

• No direct access to the quarks due to confinement!

3.8 Subtraction constants

• Extension of the numbers of parameters compared to Anisovich & Leutwyler'96

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

- In the work of Anisovich & Leutwyler'96 matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem
 ➡ The amplitude has an Adler zero along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III
 Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

3.8 Subtraction constants

• The subtraction constants are

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 + \delta_0 s^3$$

Only 6 coefficients are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive M_I Subtraction constants Taylor coefficients

$$M_{0}(s) = A_{0} + B_{0}s + C_{0}s^{2} + D_{0}s^{3} + \dots$$
$$M_{1}(s) = A_{1} + B_{1}s + C_{1}s^{2} + \dots$$
$$M_{2}(s) = A_{2} + B_{2}s + C_{2}s^{2} + D_{2}s^{3} + \dots$$

• Gauge freedom in the decomposition of M(s,t,u)

3.8 Subtraction constants

Build some gauge independent combinations of Taylor coefficients

$$H_{0} = A_{0} + \frac{4}{3}A_{2} + s_{0}\left(B_{0} + \frac{4}{3}B_{2}\right) \qquad H_{0}^{ChPT} = 1 + 0.176 + O\left(p^{4}\right)$$

$$H_{1} = A_{1} + \frac{1}{9}\left(3B_{0} - 5B_{2}\right) - 3C_{2}s_{0} \qquad \Longrightarrow \qquad h_{1}^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(1 - 0.21 + O\left(p^{4}\right)\right)$$

$$H_{2} = C_{0} + \frac{4}{3}C_{2}, \qquad H_{3} = B_{1} + C_{2} \qquad h_{2}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(4.9 + O\left(p^{4}\right)\right)$$

$$H_{4} = D_{0} + \frac{4}{3}D_{2}, \qquad H_{5} = C_{1} - 3D_{2} \qquad h_{3}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(1.3 + O\left(p^{4}\right)\right)$$

$$\chi^{2}_{theo} = \sum_{i=1}^{3} \left(\frac{h_{i} - h_{i}^{ChPT}}{\sigma_{h_{i}^{ChPT}}} \right)^{2}$$

$$\sigma_{\boldsymbol{h}_{i}^{ChPT}}=0.3\left|\boldsymbol{h}_{i}^{NLO}-\boldsymbol{h}_{i}^{LO}\right|$$

 $h_i \equiv \frac{H_i}{H_0}$

Hat functions

• Discontinuity of M_I : by definition $disc[M_I(s)] \equiv disc[f_\ell^I(s)]$ $\implies f_1^I(s) = M_I(s) + \hat{M}_I(s)$

with $\hat{M}_{I}(s)$ real on the right-hand cut

- The left-hand cut is contained in $\hat{M}_{I}(s)$
- Determination of $\hat{M}_{I}(s)$: subtract M_{I} from the partial wave projection of M(s,t,u) $M(s,t,u) = M_{0}(s) + (s-u)M_{1}(t) + ...$
- $\hat{M}_{I}(s)$ singularities in the t and u channels, depend on the other M_{I} Angular averages of the other functions \implies Coupled equations

Hat functions

• Ex:
$$\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s-s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle zM_1 \rangle$$

where
$$\langle z^n M_I \rangle (s) = \frac{1}{2} \int_{-1}^{1} dz \ z^n M_I (t(s,z)),$$

 $z = \cos \theta$ scattering angle

Non trivial angular averages index in the integration path to avoid crossing cuts Anisovich & Anselm'66

2.3 Computation of the amplitude

- What do we know?
- The amplitude has an Adler zero: soft pion theorem Adler'85
 Amplitude has a zero for :

 $p_{\pi^{+}} \to 0 \implies s = u = 0, \ t = M_{\eta}^{2} \qquad M_{\pi} \neq 0 \qquad s = u = \frac{4}{3}M_{\pi}^{2}, \ t = M_{\eta}^{2} + \frac{M_{\pi}^{2}}{3}$ $p_{\pi^{-}} \to 0 \implies s = t = 0, \ u = M_{\eta}^{2} \qquad s = t = \frac{4}{3}M_{\pi}^{2}, \ u = M_{\eta}^{2} + \frac{M_{\pi}^{2}}{3}$

SU(2) corrections

Anisovich & Leutwyler'96

2.4 Neutral channel :
$$\eta \rightarrow \pi^0 \pi^0 \pi^0$$

- What do we know?
- We can relate charged and neutral channels

 $\overline{A}(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$

Correct formalism should be able to reproduce both charged and neutral channels

Ratio of decay width precisely measured

$$r = \frac{\Gamma(\eta \to \pi^0 \pi^0 \pi^0)}{\Gamma(\eta \to \pi^+ \pi^- \pi^0)} = 1.426 \pm 0.026 \qquad PDG'19$$

2.4 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

3.3 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

2.5 Dispersive treatment

• The Chiral series has convergence problems

2.5 Dispersive treatment

• The Chiral series has convergence problems

- Dispersive treatment :
 - analyticity, unitarity and crossing symmetry
 - Take into account all the rescattering effects

2.6 Why a new dispersive analysis?

- Several new ingredients:
 - New inputs available: extraction $\pi\pi$ phase shifts has improved

Ananthanarayan et al'01, Colangelo et al'01 Descotes-Genon et al'01 Kaminsky et al'01, Garcia-Martin et al'09

 New experimental programs, precise Dalitz plot measurements *TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) BES III (Beijing)*

- Many improvements needed in view of very precise data: inclusion of
 - Electromagnetic effects (O(e²m)) Ditsche, Kubis, Meissner'09
 - Isospin breaking effects
 - Inelasticities

Emilie Passemar

Gullstrom, Kupsc, Rusetsky'09, Schneider, Kubis, Ditsche'11

Albaladejo & Moussallam'15

2.11 Z distribution for $\eta \rightarrow \pi^0 \pi^0 \pi^0$ decays

• The amplitude squared in the neutral channel is

Emilie Passemar

2.12 Comparison of results for α

Experimental Facilities and Role of JLab 12

M. J. Amaryan et al. CLAS Analysis Proposal, (2014)

π	e⁺ e⁻ γ			
η	e⁺ e⁻ γ	<i>π⁺</i> π ⁻ γ	$\pi^+\pi^-\pi^0,$ $\pi^+\pi^-$	<i>π</i> * <i>π</i> ⁻ <i>e</i> * <i>e</i> ⁻
η΄	e⁺ e⁻ γ	<i>π⁺</i> π⁻ γ	π ⁺ π ⁻ π ⁰ , π ⁺ π ⁻	π ⁺ π ⁻ η, π ⁺ π ⁻ e ⁺ e ⁻
ρ		<i>π⁺</i> π⁻ γ		
ω	<i>e</i> ⁺ <i>e</i> ⁻ <i>π</i> ⁰	<i>π</i> ⁺ <i>π</i> ⁻ γ	$\pi^+\pi^-\pi^0$	
φ			$\pi^+\pi^-\pi^0$	π⁺ π⁻ η

2.3 Computation of the amplitude

- What do we know?
- Compute the amplitude using ChPT : the effective theory that describe dynamics of the Goldstone bosons (kaons, pions, eta) at low energy
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses

Weinberg's power counting rule

$$\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_{d} , \mathcal{L}_{d} = \mathcal{O}(p^{d}), p \equiv \{q, m_{q}\}$$

$$p \ll \Lambda_{_H} = 4\pi F_{\pi} \sim 1 \text{ GeV}$$

2.5 Iterative Procedure

2.6 Subtraction constants

• Extension of the numbers of parameters compared to Anisovich & Leutwyler'96

$$P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$$
$$P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$$
$$P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2$$

- In the work of Anisovich & Leutwyler'96 matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem
 ➡ The amplitude has an Adler zero along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III
 Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

2.7 Subtraction constants

• The subtraction constants are

 $P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$ $P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$ $P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 + \delta_0 s^3$

Only 6 coefficients are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive M_I Subtraction constants Taylor coefficients

$$M_{0}(s) = A_{0} + B_{0}s + C_{0}s^{2} + D_{0}s^{3} + \dots$$
$$M_{1}(s) = A_{1} + B_{1}s + C_{1}s^{2} + \dots$$
$$M_{2}(s) = A_{2} + B_{2}s + C_{2}s^{2} + D_{2}s^{3} + \dots$$

• Gauge freedom in the decomposition of M(s,t,u)

2.7 Subtraction constants

• Build some gauge independent combinations of Taylor coefficients

$$H_{0} = A_{0} + \frac{4}{3}A_{2} + s_{0}\left(B_{0} + \frac{4}{3}B_{2}\right) \qquad H_{0}^{ChPT} = 1 + 0.176 + O\left(p^{4}\right)$$

$$H_{1} = A_{1} + \frac{1}{9}\left(3B_{0} - 5B_{2}\right) - 3C_{2}s_{0} \qquad \Longrightarrow \qquad h_{1}^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(1 - 0.21 + O\left(p^{4}\right)\right)$$

$$H_{2} = C_{0} + \frac{4}{3}C_{2}, \qquad H_{3} = B_{1} + C_{2} \qquad h_{2}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(4.9 + O\left(p^{4}\right)\right)$$

$$H_{4} = D_{0} + \frac{4}{3}D_{2}, \qquad H_{5} = C_{1} - 3D_{2} \qquad h_{3}^{ChPT} = \frac{1}{\Delta_{\eta\pi}^{2}}\left(1.3 + O\left(p^{4}\right)\right)$$

$$\chi^{2}_{theo} = \sum_{i=1}^{3} \left(\frac{h_{i} - h_{i}^{ChPT}}{\sigma_{h_{i}^{ChPT}}} \right)^{2}$$

$$\sigma_{\boldsymbol{h}_{i}^{ChPT}}=0.3\left|\boldsymbol{h}_{i}^{NLO}-\boldsymbol{h}_{i}^{LO}\right|$$

 $h_i \equiv \frac{H_i}{H_0}$

Isospin breaking corrections

Dispersive calculations in the isospin limit

 to fit to data one has to include
 isospin breaking corrections

•
$$M_{c/n}(s,t,u) = M_{disp}(s,t,u) \frac{M_{DKM}(s,t,u)}{\tilde{M}_{GL}(s,t,u)}$$
 with M_{DKM} : amplitude at one loop with $\mathcal{O}(e^2m)$ effects
 $Ditsche, Kubis, Meissner'09$
 M_{GL} : amplitude at one loop in the isospin limit
 $Gasser \& Leutwyler' 85$
Kinematic map:
 $isospin symmetric boundaries$
 $M_{GL} \Rightarrow \tilde{M}_{GL}$

Emilie Passemar

2.14 Comparison with Lattice

Emilie Passemar

3.2 Theoretical Framework

• Unitarity relations

$$\operatorname{Im} \mathcal{M}_{\eta' \to \eta \pi \pi} = \frac{1}{2} \sum_{n} (2\pi)^4 \, \delta^4 \left(p_{\eta} + p_1 + p_2 - p_n \right) \mathcal{T}_{n \to \eta \pi \pi}^* \mathcal{M}_{\eta' \to n}$$

 A dispersive analysis also exists by *Isken et al.*'17 but here we include D waves as well as kaon loops

n'