

η→**3**π **and the light quark mass determination**

Emilie Passemar *epassema@indiana.edu*

Indiana University/Jefferson Laboratory/IFIC Valencia

 Modern Techniques in Hadron Spectroscopy Ruhr University Bochum, Germany, July 15 -27, 2024

Based on *Phys. Rev. Lett. 118 (2017) no.2, 022001, Eur.Phys.J. C78 (2018) no.11, 947 G. Colangelo, S. Lanz, E.P. and H. Leutwyler*

Phys. Rept. 945 (2022), 1-105, L. Gan, B. Kubis, E.P., S. Tulin

- 1. Introduction and Motivation
- 2. Why is it interesting to study $\eta \rightarrow 3\pi$?
- 3. Computation of the Amplitude
- 4. Fits to the Dalitz plots and Results
- 5. Conclusion and Outlook

1. Introduction and Motivation

1.1 Why is it interesting to study η **and** η '**physics?**

- Quantum numbers I^G J^{PC} = 0^+ 0^{-+}
	- *C*, *P* eigenstates, all additive quantum numbers are zero
	- flavour-conserving laboratory for symmetry tests
- η: pseudo-Goldstone boson,

$$
M_{\eta}
$$
 = 547.862(17) MeV, Γ_{η} = 1.31 keV

All decay modes forbidden at leading order by *symmetries* (C, P, angular momentum, isospin/G-parity. . .)

- η' : not a Goldstone boson due to U(1)_A anomaly $\left| M_{\eta'} \right| = 957.78(6)$ MeV $\Gamma_{\eta'}$ = 196 keV
- Theoretical methods:
	- $-$ (large-N_c) chiral perturbation theory, RChPT
	- dispersion relations to resum final state interactions
	- Vector-meson dominance

1.1 Why is it interesting to study η **and** η '**physics?**

• In the study of η and η' physics, large amount of data have been collected:

CBall, WASA, KLOE & KLOEII, BESIII, A2@MAMI, CLAS, *GlueX*

More to come: *JEF, REDTOP (Elam et al'22), LHCb?, JLab@22GeV*

1.2 Experimental Facilities for studying η and η '

Emilie Passemar 6

Why is it interesting to study η **and** η '**physics?**

• In the study of η and η' physics, large amount of data have been collected:

EXAMPLE OF A CHAILE & CHAILE & KLOEII, BESIII, A2@MAMI, CLAS, *GlueX*

More to come: *JEF, REDTOP (Elam et al'22), LHCb?, JLab@22GeV*

- Unique opportunity:
	- Test chiral dynamics at low energy
	- Extract fundamental parameters of the Standard Model: ex: light quark masses
	- Study of fundamental symmetries: P & CP and C & CP violation
	- Looking for beyond Standard Model Physics **Dark Sector**

Rich physics program at η , η' factories

Standard Model highlights

- Theory input for light-by-light scattering for $(g-2)_{\mu}$
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P_,CP violation
- C, CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- **Scalars**
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

Rich physics program at η , η' factories

Standard Model highlights

- Theory input for light-by-light scattering for $(g-2)_{\text{u}}$
- Extraction of light quark masses
- QCD scalar dynamics

Fundamental symmetry tests

- P_,CP violation
- C, CP violation

[Kobzarev & Okun (1964), Prentki & Veltman (1965), Lee (1965), Lee & Wolfenstein (1965), Bernstein et al (1965)]

Dark sectors (MeV—GeV)

- Vector bosons
- **Scalars**
- Pseudoscalars (ALPs)

(Plus other channels that have not been searched for to date)

1.3 Analytical methods for light quark spectroscopy

• In the study of hadron spectroscopy, large amount of very precise data on meson physics have been and will be collected:

KLOE & KLOE-II, BES, A1, A2@MAMI, CLAS, GlueX, JEF, COMPASS, LHCb, PANDA,…

They are background for searches of new states

- **Rescattering effets** • Use Isobar model to describe the data \Box Improve to include FSI
- Build an amplitude with physical properties: \rightarrow Analyticity, Unitarity and Crossing Symmetry: *Dispersion Relations*
	- \rightarrow Chiral constraints at LE
	- \rightarrow Regge behavior at HE

2. Why is it interesting to study $\eta \rightarrow 3\pi$?

2.1 Light quark masses

- Fundamental unknowns of the the QCD Lagrangian In the following, consider the 3 light flavours u, d, s
- High precision physics at low energy as a key of new physics? m_d - m_u : small isospin breaking corrections but to be taken into account for high precision physics
- No direct access to the quarks due to confinement!

2.2 Meson masses from ChPT

- $m_{u,d,s} \ll \Lambda_{oCD}$: masses treated as small perturbations ρ expansion in powers of m_q j $m_{u,d,s} \ll \Lambda_{\mathit{QCD}}$
- *Gell-Mann-Oakes-Renner relations*:

(meson mass)² = (spontaneous ChSB) x (explicit ChSB) K *qq m* m_{a}

• From LO ChPT without e.m effects:

$$
\begin{array}{l} M_{\pi^+}^2=(m_{\rm u}+m_{\rm d})\,B_0+O(m^2)\\ M_{K^+}^2=(m_{\rm u}+m_{\rm s})\,B_0+O(m^2)\\ M_{K^0}^2=(m_{\rm d}+m_{\rm s})\,B_0+O(m^2)\end{array}
$$

• Electromagnetic effects: *Dashen's theorem*

 $(M_{K^+}^2 - M_{K^0}^2)_{em} - (M_{\pi^+}^2 - M_{\pi^0}^2)_{em} = O(e^2m)$ Dashen'69

2.2 Meson masses from ChPT

- $m_{u,d,s} \ll \Lambda_{oCD}$: masses treated as small perturbations ρ expansion in powers of m_q j $m_{u,d,s} \ll \Lambda_{\mathit{QCD}}$
- *Gell-Mann-Oakes-Renner relations*:

(meson mass)² = (spontaneous ChSB) x (explicit ChSB)

qq m

• From LO ChPT without e.m effects:

$$
M_{\pi^+}^2 = (m_{\rm u} + m_{\rm d}) B_0 + O(m^2)
$$

$$
M_{K^+}^2 = (m_{\rm u} + m_{\rm s}) B_0 + O(m^2)
$$

$$
M_{K^0}^2 = (m_{\rm d} + m_{\rm s}) B_0 + O(m^2)
$$

• Electromagnetic effects: *Dashen's theorem*

$$
\left(M_{K^+}^2 - M_{K^0}^2 \right)_{em} - \left(M_{\pi^+}^2 - M_{\pi^0}^2 \right)_{em} = O\left(e^2 m\right)
$$

 $M_{\pi^0}^2 = B_{_0} (m_{_u} + m_{_d})$ $(M_{\pi^+}^2 = B_{0} (m_{\mu} + m_{\mu}) + \Delta_{em}$ $M_{K^0}^2 = B_{0} (m_d + m_s)$ $(M_{K^{+}}^{2} = B_{0} (m_{u} + m_{s}) + \Delta_{em}$

 m_q

() () () *Dashen*'*69* **0 0**

2 unknowns B_0 and Δ_{em}

Quark mass ratios

Weinberg'77

$$
\frac{m_u}{m_d} \stackrel{\text{LO}}{=} \frac{M_{K^+}^2 - M_{K^0}^2 + 2M_{\pi^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 0.56 \,,
$$

$$
\frac{m_s}{m_d} \stackrel{\text{LO}}{=} \frac{M_{K^+}^2 + M_{K^0}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} = 20.2
$$

2.3 Lattice QCD

• Compute the quark masses from first principles

 $L_{\overrightarrow{QCD}}$ on the lattice

- \triangleright QCD Lagrangian as input
- \triangleright Calculate the spectrum of the low-lying states for different quark masses
- \triangleright Tune the values of the quark masses such that the QCD spectrum is reproduced

 \triangleright Set the scale by adding an external input or extract quark mass ratios

- NB: computation in the isospin limit: $\left| m_u = m_d = \hat{m} \right|$
- To get $m_u m_d$, needs handle on e.m. effects: \triangleright Input from phenomenology (e.g., Kaon mass difference) **2** $m_u + m_d$
	- \triangleright Put photons on the lattice

$$
\qquad \qquad \Longleftrightarrow \qquad \text{See } \mathsf{FLAG}'21
$$

Emilie Passemar

2.4 Extracting light quark masses from $\eta \rightarrow 3\pi$

• Decay forbidden by isospin symmetry $\eta(I^G = 0^+) \rightarrow 3\pi(I^G = 1^-)$

$$
A = (m_u - m_d) A_1 + \alpha_{em} A_2
$$

- Sutherland'66, Bell & Sutherland'68 *Baur, Kambor, Wyler'96, Ditsche, Kubis, Meissner'09* $\alpha_{\scriptscriptstyle em}$ effects are small
- Decay rate measures the size of isospin breaking (m_u − m_d) in the SM:

$$
L_{QCD} \longrightarrow L_{IB} = -\frac{m_u - m_d}{2} (\overline{u}u - \overline{d}d)
$$

□ → Unique access to
$$
(m_u - m_d)
$$

Decays of η next below.

• η decay from PDG: <u>η</u> decay from F

 $M_{\eta} = 547.862(17) \text{ MeV}$

2.5 Definitions • ηdecay: η→ π⁺π- π⁰ • Mandelstam variables only two independent variables • 3 body decay Dalitz plot Expansion around X=Y=0 *s* = *p*π⁺ + *p*^π ([−]) **2 ,** (**⁰**) **2** *tp p* **,** ^π ^π = +[−] (**⁰**) **2** *up p* ^π ^π = + ⁺ **0 22 2 ⁰** *stuM M M s* **2 3** ^η ^π ^π ++ = + + ⁺ ≡ () (**⁰**) **⁴ 0 4 2 (,,)** *out i p p p p Astu* ^η πππ πππ ^η ^π ^δ ⁺ [−] ⁺ [−] = −−− Dalitz plot variables *X* -1 0 1 *Y* -1 0 1 ¹ *^X* ⁼ [√]³ **Emilie Passemar 20 2 ⁰** *QM M M ^c* ^η ^π ^π ≡− −+θ *S A***(***s***,***t***,***u***) 2** = *N* **1** + *aY* + *bY* **²** + *dX***²** + *fY* **³** (+ **...**) *X* = **3** *T*⁺ −*T*[−] *Qc* ⁼ **³ 2***M*^η *Qc* (*u* − *t*) *Y* = **3***T***⁰** *Qc* [−] **¹** ⁼ **³ 2***M*^η *Qc M*^η − *M* ^π (**⁰**) **2** [−] *^s* [⎛] ⎝ ⎞ [⎠] [−] **¹**

 \sim

• In the following, extraction of Q from $\eta \rightarrow \pi^+ \pi^- \pi^0$

$$
\Gamma_{\eta \to \pi^+ \pi^- \pi^0} = \frac{1}{Q^4} \frac{M_K^4}{M_\pi^4} \frac{\left(M_K^2 - M_\pi^2\right)^2}{6912\pi^3 F_\pi^4 M_\eta^3} \int_{s_{\text{min}}}^{s_{\text{max}}} ds \int_{u_{-}(s)}^{u_{+}(s)} du \, |M(s, t, u)|^2
$$
\n\nDetermined from experiment\nDetermined from:
\n
$$
\frac{1}{\left[Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}\right]}
$$
\n
$$
\left[\hat{m} \equiv \frac{m_d + m_u}{2}\right]
$$

• Aim: Compute M(s,t,u) with the *best accuracy*

d u

• Mass formulae to second chiral order
\n
$$
\frac{M_K^2}{M_{\pi}^2} = \frac{m_s + \hat{m}}{2\hat{m}} \left[1 + \Delta_M + \mathcal{O}(m^2) \right]
$$
\n
$$
\frac{M_{K^0}^2 - M_{K^+}^2}{M_K^2 - M_{\pi}^2} = \frac{m_d - m_u}{m_s - \hat{m}} \left[1 + \Delta_M + \mathcal{O}(m^2) \right]
$$
\nwith $\Delta_M = \frac{8(M_K^2 - M_{\pi}^2)}{F_{\pi}^2} (2L_8 - L_5) + \chi$ -logs
\n• The same O(m) correction appears in both ratios
\nTake the double ratio
\n
$$
Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} = \frac{M_K^2}{M_{\pi}^2} \frac{M_K^2 - M_{\pi}^2}{(M_{K^0}^2 - M_{K^+}^2)_{QCD}} \left[1 + O(m_q^2, e^2) \right]
$$

Very Interesting quantity to determine since Q^2 does not receive any correction at NLO!

 $\overline{}$

 $\overline{}$ $\overline{}$

• The same O(m) correction appears in both ratios \rightarrow Take the double ratio

$$
\left| Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} \right| = \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{\left(M_{K^0}^2 - M_{K^+}^2\right)_{QCD}} \left[1 + O(m_q^2, e^2)\right]
$$

Very Interesting quantity to determine since Q² does not receive any correction at NLO!

• Using Dashen's theorem and inserting Weinberg LO values

$$
Q_D^2\equiv\frac{(M_{K^0}^2+M_{K^+}^2-M_{\pi^+}^2+M_{\pi^0}^2)(M_{K^0}^2+M_{K^+}^2-M_{\pi^+}^2-M_{\pi^0}^2)}{4M_{\pi^0}^2(M_{K^0}^2-M_{K^+}^2+M_{\pi^+}^2-M_{\pi^0}^2)}
$$

• From Q \implies Ellipse in the plane m_s/m_d , m_u/m_d Leutwyler's ellipse

Emilie Passemar 24

• Estimate of Q:
$$
B_0(m_u - m_d) = \frac{1}{Q^2} \frac{M_K^2 (M_K^2 - M_\pi^2)}{M_\pi^2} + O(M^3)
$$

 \triangleright From corrections to the Dashen's theorem

$$
B_0(m_d - m_u) = (M_{K^+}^2 - M_{K^0}^2) - (M_{\pi^+}^2 - M_{\pi^0}^2) + O(e^2m)
$$

The corrections can be large due to $e²m_s$ corrections, difficult to estimate due to LECs

$$
\triangleright \text{ From } \eta \to \pi^+ \pi^- \pi^0: \quad A(s,t,u) = -\frac{1}{\mathcal{Q}^2} \frac{M_K^2}{M_\pi^2} \frac{M_K^2 - M_\pi^2}{3\sqrt{3}F_\pi^2} M(s,t,u)
$$

$$
\sum_{\eta \to 3\pi} \propto \int |A(s,t,u)|^2 \propto Q^{-4}
$$

• In the following, compute the normalized amplitude M(s,t,u) with the best accuracy **extraction of Q**

• Use Q to determine $m_{_H}$ and $m_{_d}$ from lattice determinations of $m_{_S}$ and $\hat{\bm{m}}$

$$
m_u = \hat{m} - \frac{m_s^2 - \hat{m}^2}{4\hat{m}Q^2}
$$
 and
$$
m_d = \hat{m} + \frac{m_s^2 - \hat{m}^2}{4\hat{m}Q^2}
$$

• From lattice determinations of $m_{_S}$ and $\hat{\bm{m}}$ + \bm{Q}

$$
\implies
$$
 Light quark masses: m_{u} , m_{d} , m_{s}

3. Computation of the Amplitude

- What do we know?
- Compute the amplitude using ChPT : the effective theory that describe dynamics of the Goldstone bosons (kaons, pions, eta) at low energy
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses $\frac{1}{2}$

 Weinberg's power counting rule

$$
\mathcal{L}_{\text{eff}} = \sum_{d \geq 2} \mathcal{L}_d, \mathcal{L}_d = \mathcal{O}(p^d), p \equiv \left\{ q, m_q \right\} \qquad p \ll \Lambda_H = 4\pi F_\pi \sim 1 \text{ GeV}
$$

$$
p << \Lambda_H = 4\pi F_\pi \sim 1 \text{ GeV}
$$

3.2 Chiral Perturbation Theory

- What do we know?
- Compute the amplitude using ChPT :

$$
\Gamma_{\eta \to 3\pi} = (66 + 94 + \dots + \dots) \text{eV} = (300 \pm 12) \text{eV}
$$

LO NLO NNLO

LO: *Osborn, Wallace*'*70* NLO: *Gasser & Leutwyler*'*85*

NNLO: *PDG'16 Bijnens & Ghorbani'07*

The Chiral series has convergence problems

Anisovich & Leutwyler'96

3.3 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

3.4 Dispersive treatment

• The Chiral series has convergence problems

3.4 Dispersive treatment

• The Chiral series has convergence problems

- *Dispersive treatment :*
	- analyticity, unitarity and crossing symmetry
	- Take into account all the rescattering effects

3.5 Why a new dispersive analysis?

- Several new ingredients:
	- New inputs available: extraction $\pi\pi$ phase shifts has improved

Kaminsky et al'01, Garcia-Martin et al'09 Ananthanarayan et al'01, Colangelo et al'01 Descotes-Genon et al'01

– New experimental programs, precise Dalitz plot measurements *CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) BES III (Beijing)*

- Many improvements needed in view of very precise data: inclusion of
	- ‒ Electromagnetic effects (O(e2m)) *Ditsche, Kubis, Meissner'09*
	- ‒ Isospin breaking effects

3.6 Method

Three Pions

3.7 Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$
M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)
$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

- $\triangleright M_I$ isospin *I* rescattering in two particles
- Amplitude in terms of S and P waves \Rightarrow exact up to NNLO ($\mathcal{O}(p^6)$)
- \triangleright Main two body rescattering corrections inside M_I
3.7 Method: Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$
M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)
$$

Fuchs, Sazdjian & Stern'93 Anisovich & Leutwyler'96

 $disc[f_1^I(s)] \approx t_1^*(s) f_1^I(s)$ with $t_1(s)$ partial wave of elastic $\pi\pi$

- \triangleright \boldsymbol{M}_{I} isospin *I* rescattering in two particles
- \triangleright Amplitude in terms of S and P waves \rightarrow exact up to NNLO ($\mathcal{O}(p^6)$)
- \triangleright Main two body rescattering corrections inside M_I
- Functions of only one variable with only right-hand cut of the partial wave \longrightarrow $disc \left[M_I(s) \right] = disc \left[f_I^I(s) \right]$

scattering

Elastic unitarity *Watson's theorem*

3.7 Method: Representation of the amplitude

- Knowing the discontinuity of $M_{_I}$ \Longrightarrow write a dispersion relation for it
- Cauchy Theorem and Schwarz reflection principle

$$
M_I(s) = \frac{1}{\pi} \int_{4M_{\pi}^2}^{s} \frac{disc[M_I(s')]}{s'-s-i\varepsilon} ds,
$$

 M_I can be reconstructed everywhere from the knowledge of $\textit{disc}\big[\,M_I(s)\,\big]$

• If M_{I} doesn't converge fast enought for $|s|\rightarrow \infty$ \Longrightarrow subtract the dispersion relation

$$
M_{I}(s) = P_{n-1}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{\infty} \frac{ds^{n}}{s^{n}} \frac{disc[M_{I}(s^{n})]}{(s^{n}-s-i\varepsilon)} P_{n-1}(s) \text{ polynomial}
$$

3.7 Representation of the amplitude

• Decomposition of the amplitude as a function of isospin states

$$
M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s)
$$

Unitarity relation:

$$
disc \left[M_{\ell}^{I}(s) \right] = \rho(s) t_{\ell}^{*}(s) \left(M_{\ell}^{I}(s) + \hat{M}_{\ell}^{I}(s) \right)
$$

• Relation of dispersion to reconstruct the amplitude everywhere:

$$
M_{I}(s) = \Omega_{I}(s) \left(P_{I}(s) + \frac{s^{n}}{\pi} \int_{4M_{\pi}^{2}}^{s} \frac{ds'}{s^{n}} \frac{\sin \delta_{I}(s') \hat{M}_{I}(s')}{|\Omega_{I}(s')| (s'-s-i\epsilon)} \right) \left[\Omega_{I}(s) = \exp \left(\frac{s}{\pi} \int_{4M_{\pi}^{2}}^{s} ds' \frac{\delta_{I}(s')}{s'(s'-s-i\epsilon)} \right) \right]
$$

Omnès function
Gasser & Russellsky'18

• $P_l(s)$ determined from a fit to NLO ChPT + experimental Dalitz plot

Emilie Passemar 40

4. Fits to the Dalitz plots and Results

4.1 Isospin breaking corrections

• Dispersive calculations in the isospin limit \implies to fit to data one has to include isospin breaking corrections

$$
M_{\text{cl}}(s,t,u) = M_{\text{disp}}(s,t,u) \frac{M_{\text{DKM}}(s,t,u)}{\tilde{M}_{\text{GL}}(s,t,u)}
$$
 with M_{DKM}: amplitude at one loop
with $\mathcal{O}(e^2m)$ effects

$$
V_n = \frac{3T_3}{Q_n} - 1
$$

Neutral channel

$$
M_{\text{GL}}: amplitude at one loop in the isospin limit
$$

$$
Gasser & Leutwyler' 85
$$

Kinematic map:
isospin symmetric boundaries
isospin symmetric boundaries

$$
X_n = \sqrt{3} \frac{T_2 - T_1}{Q_n}
$$

$$
M_{\text{GL}} \rightarrow \tilde{M}_{\text{GL}}
$$

$$
Q_n \equiv M_n - 3M_{\pi^0}
$$

Emilie Passemar 42

4.2 $\eta \rightarrow 3\pi$ **Dalitz plot**

In the charged channel: experimental data from *WASA, KLOE, BESIII*

Emilie Passemar p_{r} by the red line.

4.3 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ **decays**

• The amplitude along the line $s = u$: The amplitude along the line

4.3 Results: Amplitude for $\eta \rightarrow \pi^+ \pi^- \pi^0$ **decays**

The amplitude along the line $t = u$:

4.4 Z distribution for $\eta \rightarrow \pi^0 \pi^0 \pi^0$ **decays**

• The amplitude squared in the neutral channel is

Comparison of results for α

4.5 Quark mass ratio

Experimental systematics needs to be taken into account

4.5 Light quark masses

• Smaller values for Q \implies smaller values for m_s/m_d and m_u/m_d than LO ChPT

4.5 Light quark masses

4.6 Prospects

• Uncertainties in the quark mass ratio

Gan, Kubis, E. P., Tulin'22

4.7 Expected Impact of JLab 22 GeV program

A New Proposal: REDTOP

arXiv:2203.07651 **up to ~5x10¹³ η per year!** $\frac{1}{54}$

Another New Proposal: eta-Factory at HIAF

 L.Gan@QNP2024

HIAF, Huizhou, China

arXiv:2407.00874v1

up to \sim 10¹³ η per year

5. Conclusion and Outlook

5.1 Conclusion

- η and η 'allows to study the fundamental properties of QCD and test the SM
	- Extraction of fundamental parameters of the SM,
		- \implies e.g. light quark masses
	- Study of chiral dynamics
	- Study of CP violation
- To studies η and η' with the best precision: Development of amplitude analysis techniques consistent with analyticity, unitarity, crossing symmetry dispersion relations allow to take into account *all rescattering effects* being as model independent as possible combined with ChPT \Box Provide parametrization for experimental studies
- In this talk, illustration with $\eta \rightarrow 3\pi$ and extraction of the light quark masses
- Many more topics could be explored with η and η'

Gan, Kubis, E. P., Tulin'22

5.2 Outlook What else? — highlights in η **and** η′ **physics**

- New η and η' programs *JEF*, *REDTOP and HIEPA Gan, Kubis, E. P., Tulin'22* **New experiments:** JEF and REDTOP −→ A. Somov, C. Gatto
- **•** In our opinion the most promising channels to study:

- Synergies between different physics:

→ Quandove Madels weedistances between
	- \triangleright Standard Model precision analyses
	- Ø Discrete symmetry tests Standard Model precision analyses
	- → Search for light BSM particles

Emilie Passemar 58 erforth Basemar, Basemar, Basemar, Basemar, Basemar, Basemar, Basemar, Basemar, Tulin 2020, Basemar, Basemar,

6. Back-up

Studying **C & CP** violation with $η \rightarrow 3π$ asymetries $\text{Studying } \textbf{C} \& \textbf{CP violation with } \eta \rightarrow 3\pi$

C $\overline{}$ <u>್ಲ</u> \sim

y your products.

 \sim

0

B. Kubis, Fundamental physics with η and η

 \vert \vert \vert

+

0

B. Kubis, Fundamental physics with η and η

Studying C & CP violation with $\eta \rightarrow 3\pi$ asymetries $\mathcal{P}(\mathcal{D})=\mathcal{P}(\mathcal{D})$ and $\mathcal{D}(\mathcal{D})=\mathcal{D}(\mathcal{D})$ and $\mathcal{D}(\mathcal{D})=\mathcal{D}(\mathcal{D})$ and $\mathcal{D}(\mathcal{D})=\mathcal{D}(\mathcal{D})$ → 20 ∞ 01 /101011011 /1111 | / 270 00 J 111 0) 2
2)
2)

1

Asymmetries constrained to the *permille* level 61

Measurement of $\eta \rightarrow 3\pi$

• More information in the charged compared to the neutral channel \rightarrow neutral channel sum over isospin:

 $A(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$

Only one Dalitz plot parameter determined $\alpha \implies$

$$
\left| A_n(s,t,u) \right|^2 = N\big(1+2\alpha Z\big)
$$

4.4 Dispersion Relations for the M_I(s)

$$
\mathbf{M}_0(s) = \mathbf{\Omega}_0(s) \left(\alpha_0 + \beta_0 s + \gamma_0 s^2 + \frac{s^3}{\pi} \int_{4M_\pi^2}^{\infty} \frac{ds'}{s'^3} \frac{\sin \delta_0^0(s') \hat{M}_0(s')}{|\mathbf{\Omega}_0(s')| (s'-s-i\varepsilon)} \right)
$$

Omnès function

Similarly for M_1 and M_2

- Four subtraction constants to be determined: α_0 , β_0 , γ_0 and one more in $M_1 (\beta_1)$
- Inputs needed for these and for the $\pi\pi$ phase shifts $\boldsymbol{\delta}^I_{\text{l}}$
	- M₀: $\pi \pi$ scattering, ℓ =0, I=0
	- $-$ M₁: $\pi\pi$ scattering, ℓ =1, I=1
	- M₂: $\pi \pi$ scattering, ℓ =0, I=2
- Solve dispersion relations numerically by an iterative procedure **Emilie Passemar**

Corrections to Dashen' **s theorem**

• Dashen's Theorem

$$
\left(M_{K^+}^2 - M_{K^0}^2\right)_{\text{em}} = \left(M_{\pi^+}^2 - M_{\pi^0}^2\right)_{\text{em}} \implies \left(M_{K^+} - M_{K^0}^2\right)_{\text{em}} = 1.3 \text{ MeV}
$$

- With higher order corrections
	- Lattice : $\left(M_{_{K^+}}$ - $M_{_{K^0}} \right)_{\rm em}$ = $1.9 \,\, \text{MeV}, \, Q$ = 22.8 \qquad Ducan et al.'96

• **ENJL model:**
$$
(M_{K^+} - M_{K^0})_{\text{em}} = 2.3 \text{ MeV}, Q = 22
$$

- 2.3 MeV, 22 *MM Q K K* ⁺ = = *Bijnens & Prades'97*

- VMD: $\left(M_{_{K^+}}$ - $M_{_{K^0}} \right)_{\rm em}$ = 2.6 MeV, \mathcal{Q} = 21.5 $\;$ Donoghue & Perez'97
	-
- Sum Rules: $(M_{K^+} M_{K^0})_{\text{em}} = 3.2 \text{ MeV}, Q = 20.7$ *Anant & Moussallam'04*

Update $Q = 20.7 \pm 1.2$ *Kastner & Neufeld'07*

1.1 Light quark masses

- Fundamental unknowns of the the QCD Lagrangian In the following, consider the 3 light flavours u, d, s
- High precision physics at low energy as a key of new physics? m_d - m_u : small isospin breaking corrections but to be taken into account for high precision physics

No direct access to the quarks due to confinement!

Emilie Passemar

3.8 Subtraction constants

• Extension of the numbers of parameters compared to *Anisovich & Leutwyler'96*

$$
P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3
$$

\n
$$
P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2
$$

\n
$$
P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2
$$

- In the work of *Anisovich & Leutwyler'96* matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem The amplitude has an *Adler zero* along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III \implies Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

3.8 Subtraction constants

• The subtraction constants are

 $P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$ $P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$ $P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 + \delta_0 s^3$

Only *6 coefficients* are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive $M₁$ Subtraction constants \iff Taylor coefficients

$$
M_0(s) = A_0 + B_0s + C_0s^2 + D_0s^3 + ...
$$

\n
$$
M_1(s) = A_1 + B_1s + C_1s^2 + ...
$$

\n
$$
M_2(s) = A_2 + B_2s + C_2s^2 + D_2s^3 + ...
$$

Gauge freedom in the decomposition of $M(s,t,u)$

3.8 Subtraction constants

• Build some gauge independent combinations of Taylor coefficients expressed to the state of the state of \sim cients *h*1*, h*2*, h*3, the fit yields a value in the range esti-

$$
H_0 = A_0 + \frac{4}{3}A_2 + s_0 \left(B_0 + \frac{4}{3}B_2\right)
$$

\n
$$
H_1 = A_1 + \frac{1}{9}(3B_0 - 5B_2) - 3C_2s_0
$$

\n
$$
H_2 = C_0 + \frac{4}{3}C_2,
$$

\n
$$
H_3 = B_1 + C_2
$$

\n
$$
H_4 = D_0 + \frac{4}{3}D_2,
$$

\n
$$
H_5 = C_1 - 3D_2
$$

\n
$$
H_5 = C_1 - 3D_2
$$

\n
$$
H_6^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(1 - 0.21 + O\left(p^4\right)\right)
$$

\n
$$
H_6^{ChPT} = \frac{1}{\Delta_{\eta\pi}^2}\left(4.9 + O\left(p^4\right)\right)
$$

\n
$$
H_7^{ChPT} = \frac{1}{\Delta_{\eta\pi}^2}\left(1.3 + O\left(p^4\right)\right)
$$

\n
$$
H_8^{ChPT} = \frac{1}{\Delta_{\eta\pi}^2}\left(1.3 + O\left(p^4\right)\right)
$$

$$
\mathcal{X}_{theo}^{2} = \sum_{i=1}^{3} \left(\frac{h_{i} - h_{i}^{ChPT}}{\sigma_{h_{i}^{ChPT}}}\right)^{2}
$$

$$
\sigma_{\boldsymbol{h}_i^{ChPT}} = 0.3 \left| h_i^{NLO} - h_i^{LO} \right|
$$

Hi

 $H^{\text{}}_{\text{0}}$

 \lfloor ⎢

a three-parameter fit to the KLOE Dalitz plot with

 $\vert H_{\cdot}\vert$ $h_i \equiv \frac{H_i}{H}$

explicit expressions obtained from the two-loop \Box

 $\overline{}$ ⎥

Hat functions

• Discontinuity of M_i : by definition J *M*_I: by definition $disc \left[M_I(s) \right] = disc \left[f_\ell^I(s) \right]$ $f_1^I(s) = M_I(s) + \hat{M}_I(s)$

with $\hat{\bm{M}}_{\bm{I}}(\bm{s})$ real on the right-hand cut

- The left-hand cut is contained in $\hat{\bm{M}}_I(s)$
- Determination of $\hat{M}_I(s)$: subtract \boldsymbol{M}_{I} from the partial wave projection of $\boldsymbol{M}(s, t, \boldsymbol{u})$ $M(s,t,u) = M_0(s) + (s-u)M_1(t) + ...$
- $\hat{\bm{M}}_I(\bm{s})$ singularities in the t and u channels, depend on the other \bm{M}_I Angular averages of the other functions \Box Coupled equations

Hat functions

• Ex:
$$
\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s - s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle zM_1 \rangle
$$

where
$$
\langle z^n M_I \rangle (s) = \frac{1}{2} \int_{-1}^{1} dz \ z^n M_I(t(s,z)),
$$

 $z = \cos \theta$ scattering angle

Non trivial angular averages \implies need to deform the integration path to avoid crossing cuts *Anisovich & Anselm'66*

2.3 Computation of the amplitude

- What do we know?
- The amplitude has an Adler zero: soft pion theorem \rightarrow Amplitude has a zero for : *Adler'85*

 $p_{\pi^-} \to 0$ \implies $s = t = 0, u = M_{\pi}^2$ $p_{\pi^+} \to 0 \implies s = u = 0, t = M_{\eta}^2$ $s = u =$ **4 3** M_{π}^2 , $t = M_{\eta}^2 + \frac{M_{\pi}^2}{3}$ $M_{\pi} \neq 0$ $S = u = \frac{1}{3} M_{\pi}$, $l = M_{\eta} + \frac{1}{3}$ $s = t =$ **4 3** M_{π}^2 , $u = M_{\eta}^2 + \frac{M_{\pi}^2}{3}$ **3**

SU(2) corrections

2.4 Neutral channel :
$$
\eta \rightarrow \pi^0 \pi^0 \pi^0
$$

- What do we know?
- We can relate charged and neutral channels

 $A(s,t,u) = A(s,t,u) + A(t,u,s) + A(u,s,t)$

 Correct formalism should be able to reproduce both charged and neutral channels

• Ratio of decay width precisely measured

$$
r = \frac{\Gamma\left(\eta \to \pi^0 \pi^0 \pi^0\right)}{\Gamma\left(\eta \to \pi^+ \pi^- \pi^0\right)} = 1.426 \pm 0.026 \text{ PDG'19}
$$
2.4 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

3.3 Neutral Channel : $\eta \rightarrow \pi^0 \pi^0 \pi^0$

2.5 Dispersive treatment

The Chiral series has convergence problems \bullet

2.5 Dispersive treatment

• The Chiral series has convergence problems

- *Dispersive treatment :*
	- analyticity, unitarity and crossing symmetry
	- Take into account all the rescattering effects

2.6 Why a new dispersive analysis?

- Several new ingredients:
	- New inputs available: extraction $ππ$ phase shifts has improved

Kaminsky et al'01, Garcia-Martin et al'09 Ananthanarayan et al'01, Colangelo et al'01 Descotes-Genon et al'01

– New experimental programs, precise Dalitz plot measurements *CBall-Brookhaven, CLAS, GlueX (JLab), KLOE I-II (Frascati) TAPS/CBall-MAMI (Mainz), WASA-Celsius (Uppsala), WASA-Cosy (Juelich) BES III (Beijing)*

- Many improvements needed in view of very precise data: inclusion of
	- ‒ Electromagnetic effects (O(e2m)) *Ditsche, Kubis, Meissner'09*
	- ‒ Isospin breaking effects
	- ‒ Inelasticities

Emilie Passemar 77

Gullstrom, Kupsc, Rusetsky'09, Schneider, Kubis, Ditsche'11

Albaladejo & Moussallam'15

2.11 Z distribution for $\eta \rightarrow \pi^0 \pi^0 \pi^0$ decays

The amplitude squared in the neutral channel is \bullet

Emilie Passemar

2.12 Comparison of results for α

Experimental Facilities and Role of JLab 12

M. J. Amaryan et al. CLAS Analysis Proposal, (2014)

2.3 Computation of the amplitude

- What do we know?
- Compute the amplitude using ChPT : the effective theory that describe dynamics of the Goldstone bosons (kaons, pions, eta) at low energy
- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$ Expansion organized in external momenta and quark masses $\frac{1}{2}$

 Weinberg's power counting rule

$$
\mathcal{L}_{eff} = \sum_{d \ge 2} \mathcal{L}_d, \mathcal{L}_d = \mathcal{O}(p^d), p \equiv \left\{ q, m_q \right\} \qquad p \ll \Lambda_H = 4\pi F_\pi \sim 1 \text{ GeV}
$$

$$
p << \Lambda_H = 4\pi F_\pi \sim 1 \text{ GeV}
$$

2.5 Iterative Procedure

2.6 Subtraction constants

• Extension of the numbers of parameters compared to *Anisovich & Leutwyler'96*

$$
P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3
$$

\n
$$
P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2
$$

\n
$$
P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2
$$

- In the work of *Anisovich & Leutwyler'96* matching to one loop ChPT Use of the SU(2) x SU(2) chiral theorem The amplitude has an *Adler zero* along the line s=u
- Now data on the Dalitz plot exist from KLOE, WASA, MAMI and BES III \implies Use the data to directly fit the subtraction constants
- However normalization to be fixed to ChPT!

2.7 Subtraction constants

• The subtraction constants are

 $P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3$ $P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2$ $P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 + \delta_0 s^3$

Only *6 coefficients* are of physical relevance

- They are determined from combining ChPT with a fit to KLOE Dalitz plot
- Taylor expand the dispersive $M₁$ Subtraction constants \iff Taylor coefficients

$$
M_0(s) = A_0 + B_0s + C_0s^2 + D_0s^3 + ...
$$

\n
$$
M_1(s) = A_1 + B_1s + C_1s^2 + ...
$$

\n
$$
M_2(s) = A_2 + B_2s + C_2s^2 + D_2s^3 + ...
$$

Gauge freedom in the decomposition of $M(s,t,u)$

2.7 Subtraction constants *M^I* (*s*) = *A^I* + *B^I s* + *C^I s*² + *D^I s*³ + *...* (8)

• Build some gauge independent combinations of Taylor coefficients expressed to the state of the state of \sim cients *h*1*, h*2*, h*3, the fit yields a value in the range esti-

$$
H_0 = A_0 + \frac{4}{3}A_2 + s_0 \left(B_0 + \frac{4}{3}B_2\right)
$$

\n
$$
H_1 = A_1 + \frac{1}{9}(3B_0 - 5B_2) - 3C_2s_0
$$

\n
$$
H_2 = C_0 + \frac{4}{3}C_2,
$$

\n
$$
H_3 = B_1 + C_2
$$

\n
$$
H_4 = D_0 + \frac{4}{3}D_2,
$$

\n
$$
H_5 = C_1 - 3D_2
$$

\n
$$
H_5 = C_1 - 3D_2
$$

\n
$$
H_6^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(4.9 + O(p^4)\right)
$$

\n
$$
H_5 = C_1 - 3D_2
$$

\n
$$
H_6^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(4.9 + O(p^4)\right)
$$

\n
$$
H_7^{ChPT} = \frac{1}{\Delta_{\eta\pi}}\left(1.3 + O(p^4)\right)
$$

\n
$$
I_8 = H_1
$$

$$
\mathcal{X}_{theo}^2 = \sum_{i=1}^3 \left(\frac{h_i - h_i^{ChPT}}{\sigma_{h_i^{ChPT}}}\right)^2
$$

$$
\sigma_{\boldsymbol{h}_i^{ChPT}} = 0.3 \left| h_i^{NLO} - h_i^{LO} \right|
$$

 $H^{\text{}}_{\text{0}}$

 \lfloor ⎢

 $h_i \equiv \frac{H_i}{H}$

explicit expressions obtained from the two-loop \Box

 $\overline{}$ ⎥

a three-parameter fit to the KLOE Dalitz plot with

Isospin breaking corrections

• Dispersive calculations in the isospin limit \implies to fit to data one has to include isospin breaking corrections

$$
M_{\text{cl}}(s,t,u) = M_{\text{disp}}(s,t,u) \frac{M_{\text{DKM}}(s,t,u)}{\tilde{M}_{\text{GL}}(s,t,u)}
$$
 with M_{DKM}: amplitude at one loop
with $\mathcal{O}(e^2m)$ effects

$$
V_n = \frac{3T_3}{Q_n} - 1
$$

Neutral channel

$$
M_{\text{GL}}: amplitude at one loop in the isospin limit
$$

$$
Gasser & Leutwyler' 85
$$

Kinematic map:
isospin symmetric boundaries
isospin symmetric boundaries

$$
X_n = \sqrt{3} \frac{T_2 - T_1}{Q_n}
$$

$$
M_{\text{GL}} \rightarrow \tilde{M}_{\text{GL}}
$$

$$
Q_n \equiv M_n - 3M_{\pi^0}
$$

Emilie Passemar 86

Emilie Passemar 87 **Emilie Passemar**

2.14 Comparison with Lattice

3.2 Theoretical Framework

• Unitarity relations Unitarity relations

Unitarity

 η'

$$
\text{Im}\mathcal{M}_{\eta'\to\eta\pi\pi}=\frac{1}{2}\sum_{n}(2\pi)^{4}\delta^{4}(p_{\eta}+p_{1}+p_{2}-p_{n})\mathcal{T}_{n\to\eta\pi\pi}^{*}\mathcal{M}_{\eta'\to n}
$$

• A dispersive analysis also exists by *Isken et al.'17* but here we include D waves as well as kaon loops