

Bertram Kopf

Coupled Channel Analysis from the Users Point of View

Modern Techniques in Hadron Spectroscopy RUB, 15.-27. July 2024

Data Analysis in Hadron Spectroscopy

- Find (all) existing resonances and measure precisely their properties
	- ➢ unambiguous determination of their quantum numbers
	- ➢ accurate measurement of the pole positions (masses and widths)
	- ➢ determination of the coupling strengths of the production and decay

- Partial Wave Analysis (PWA) is needed to determine $I^G(J^{PC})$ -quantum numbers and to find even new resonances
- Fits in the complete n-dimensional phase-space are in general necessary
	- ► consideration of the complete decay chain for the initial up to the final state

Quantum Mechanics

Interference effects play an essential role

Example: $\bar{p}p \to \pi^0 \pi^0 \pi^0$ at rest (Crystal Barrel @ LEAR)

- Reaction chain can be fully described by 2 dimensions \rightarrow Dalitzplot
- Quantum mechanical effects become clearly visible through interference patterns and are needed to be taken into account in the PWA
- Description of the probability density function (PDF) by quantum mechanical waves is needed

General PWA Strategy

- Extraction of the complete transition amplitude $M(k_1, ..., k_N)$
- $\bullet \ \ |\mathcal{M}(\mathsf{k}_1, \ ...,\, \mathsf{k}_\mathsf{N})|^2$ accessible
	- ► (in)coherent sum of the amplitudes of all waves with all individual intermediate resonances

PWA: fitting experimental data to obtain weights (complex amplitudes) C_1 , C_2 , ...

Unbinned Maximum Likelihood Method

- $\bullet\,$ Dalitzplots can be provided by binned data and thus fitted by a χ^2 minimization
- Phasespace of the most channels of interest contains more than 2 dimensions and are more complex
- Event-based fits by making use of the unbinned likelihood method

- Logarithm of likelihood function for PWA
	- ➢ nominator: sum over data
	- ➢ denominator: sum over reconstructed phasespace distributed events

Why Fits in the n-dimensional Phasespace?

 Peaks in the invariant mass spectrum are not necessarily originating from resonances

Example: $\eta_c \rightarrow a_2(1320) \pi^0 \rightarrow (\pi^0 \eta) \pi^0$

- \bullet 2 additional peaks visible in M($\pi^{\rm o}\eta$)
- 3 additional peaks visible in $M(\pi^0\pi^0)$

Why Fits in the n-dimensional Phasespace?

- Dalitzplot
	- **EX** flat for phasespace distributed events: $[M(k_1, ..., k_N)]^2$ = const
	- \triangleright structures (bands) at m 2 ab = m \times for resonances X decaying to X \rightarrow a b
	- density distribution along the band are related to the decay angular distribution of the resonance
- Decay angular distribution of the a₂(1320) in the helicity frame: $D^2{}_{00} \sim (cos^2\theta -1/3)^2$
- Additional peaks are originating from decay angular distribution of the $a_2(1320)$
- Interpretation of the structures in higher dimensional phasespace is much more difficult

Spin Formalisms

- Different spin formalisms on the market
	- \rightarrow needed for the determination of the quantum numbers
	- \geq mainly differ in the choice of the spin quantization
	- \rightarrow all of them have their pros and cons
- Helicity formalism
	- \rightarrow decay characteristics based on Wigner-D rotation matrix $D^{J_X}_{\lambda_{J_X}\lambda_a-\lambda_b}(\phi,\theta,-\phi)$
	- \geq easy to use for sequential decays
	- ➢ pure helicity amplitudes does not contain information about the angular moments of the decay processes
	- \geq descriptions could be complicated for final state particles with spin (J>0) due to extrarotations
- Spin-orbit (LS) formalism
	- \rightarrow decay characteristics based on spherical harmonic functions $Y_L^m(\theta, \phi)$
	- \geq easy access to the L-dependent barrier factors
	- ➢ simple transformation between helicity and LS-amplitudes

$$
F_{\lambda_a \lambda_b} = \sum_{LS} \alpha_{LS} \sqrt{\frac{2J_X + 1}{2L + 1}} < J_a, \lambda_a, J_b, -\lambda_b | S, \lambda_a - \lambda_b > < L, 0, S, \lambda_a - \lambda_b | J_X, \lambda_a - \lambda_b >
$$

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024 Bertram Kopf, Ruhr-Universität Bochum

Spin Formalisms

- Non-relativistic Tensor formalism (Zemach formalism)
	- ➢ only 3-vectors are taken into account
- Relativistic Tensor formalism (Rarita-Schwinger formalism)
	- ➢ Lorenz-invariant description using 4-vectors, polarization vectors, orbital momentum tensors, spin-projection tensors, ...
	- ➢ choice of any reference frame possible
	- \rightarrow momentum dependent barrier factor (p^L-dependence) is automatically taken into account
	- \geq elegant for final state particles with spin (J>0)
	- ➢ difficult and very computationally intensive for large L and S
- Multipole amplitudes
	- ➢ suitable choice for radiative decays
	- ➢ electric and magnetic multipoles give access to the transition form factors
	- ➢ simple transformation between helicity and multipole amplitudes

Dynamics

- Breit-Wigner functions widely used
	- ➢ good approximation for isolated resonances appearing in a single channel
	- ➢ extracted resonance parameters are not unique and depend on the production and decay process
- More sophisticated descriptions needed for
	- ➢ resonances decaying into multiple channels
	- \rightarrow several resonances with the same quantum numbers appearing in the same channel
	- \rightarrow resonances located at thresholds \rightarrow distortion of the line shape

Approaches with an adequate consideration of unitarity and analyticity needed (K-matrix, N/D-method, Two-potential decomposition)

K-Matrix

Aitchison: "Nucl Phys A189 (1972) 417

S.U. Chung, E.Klempt "A Primer on K-matrix Formalism", BNL Preprint (1995)

• A two body scattering process can be fully described by the S-matrix

$$
S\,=\,I+\,2i\,\sqrt{\rho}\,T\,\sqrt{\rho}
$$

• T-matrix can be expressed by K-matrix:

$$
T = (I - i K \rho)^{-1} K
$$

• Example: channel 1: $\pi\pi$, channel 2: K \overline{K}

K-Matrix with P-Vector Approach

Aitchison: "The K-Matrix formalism for overlapping resonances", Nucl Phys A189 (1972) 417

- Generalization of the K-matrix formalism to the case of production of resonances in more complex reactions
- Dynamical function for P-vector approach: $F = (I i K \rho)^{-1} P$

• Example: $\bar{\sf p}{\sf p} \to {\sf f}_{{\sf o}}\:\pi^{{\sf o}} \to$ (KK) $\pi^{{\sf o}}$

• Parameters in the fit (free or fixed): $g_{\alpha i}$, β_{α} , m_{α} , c_{kij} , c_{ki}

Scattering Process: K-Matrix vs. Breit Wigner

Analyticity

- Below thresholds proper analytical continuations are needed (e.g. $K\overline{K}$ channel in the region between $\pi\pi$ and K \bar{K} threshold)
- K-matrix with standard phase space factors: $\rho = \sqrt{\left[1-\left(\frac{m_a+m_b}{m}\right)^2\right]\cdot \left[1-\left(\frac{m_a-m_b}{m}\right)^2\right]}$
	- ➢ violates constraints from analyticity: unphysical cuts for unequal masses
- Proper description with Chew-Mandelstam function from
	- \ge above threshold: $\rho(s) = Im(CM(s))$
	- $\hat{T} = (I i K \rho)^{-1} K$ replaced by $T = (I + K CM(s))^{-1} K$

- Single channel fits
	- ➢ access to only one production mode and one decay channel
	- ➢ unitarity cannot be adequately taken into account due to lack of other relevant channels
	- \geq K-matrix difficult to use, as only the coupling strengths to the relevant single channel can be determined
	- ➢ Breit-Wigner can often be only used
	- ➢ outcome of model- (mass-)independent fits can provide valuable input for coupled channel analyses
- Advantages of coupled channel fits
	- ➢ usage of common and unique description of the dynamics possible
	- ➢ better description of threshold effects
	- ➢ better fulfillment of the conservation of unitarity
	- ➢ more constraints due to common amplitudes
- Channels with small number of final state particles
	- ➢ less complex due to small dimensions of the phasespace
	- ➢ reflections better under control
- (All) decay channels that have significant coupling to the resonances
	- ➢ guaranties an adequate consideration of unitarity
	- ➢ access to all relevant g-factors
	- ➢ access to final state interaction that might occur
- $\pi\pi$ (or K π -) scattering data
	- ➢ process only characterized by elasticity and phase motion
	- ➢ good and easy access to the resonances
	- ➢ very helpful for the normalization of the g-factors with regard to the unitarity

Examples in the Filed of Light Meson Spectroscopy

- Light mesons are bound states consisting of u-, d- and s-quarks
- Cover the non-perturbative QCD regime
- Description very challenging
	- ➢ lattice QCD
	- ➢ phenomenological models
- Observation and measurements of the resonance properties very challenging
	- ➢ many overlapping resonances with same quantum numbers
	- ➢ resonances decay in different channels
	- ➢ distinction between conventional qqmesons and exotics difficult

energy dependence of ^a*^s*

Research Topic: Glueballs and Hybrids

 $2.5²$

- A doubtless evidence for exotics are the observation of resonances with spin-exotic quantum numbers which are forbidden for qq-mesons
- LQCD: lightest glueballs with spin-exotic quantum numbers J^{PC}= 0⁺⁻, 1⁻⁺, 2⁺⁻ above 4 GeV/c²
- Glueballs in the light meson mass range only with non exotic quantum numbers $J^{PC} = 0^{++}$, 0^{-+} , 2^{++} predicted
- Lightest hybrid state expected just below 2 GeV/c² with exotic quantum numbers $I^{G}(J^{PC}) = 1-(1^{-+})$
	- $\geq 2 \pi_1$ candidates below 2 GeV listed in the PDG
	- δ π ₁(1400): only observed in the decay to πn
	- δ π ₁(1600): observed in several decay channels

PWA with $\bar{p}p$ Data from Crystal Barrel at LEAR

- Fixed target experiment at CERN
- In operation between 1989 and 1996
- $\bar{p}p$ annihilation at rest and in flight
	- ➢ highest beam momentum 1.94 GeV/c
- Physics program
	- ➢ spectroscopy of light mesons and search for

exotic states

Eur. Phys.J. C (2020) 80, 453 Crystal Barrel Collaboration

Coupled channel analysis of $\bar{p}p \to \pi^0\pi^0\eta$, $\pi^0\eta\eta$ and $K^+K^-\pi^0$ at 900 MeV/c and of $\pi\pi$ -scattering data

$\bar{\mathsf{p}}$ p → K*K⁻πº, πºπºη, πºηη @ 900 MeV/c

- K-matrix description for
	- \rightarrow f₀ with 5 poles and 5 channels
	- \rightarrow f₂ with 4 poles and 4 channels
	- \rightarrow ρ with 2 poles and 3 channels
	- $\geq a_0$ and a_2 with 2 poles and 2 channels, each
	- $\;\rightarrow\; \pi_1^0 \rightarrow \pi^0\eta$ in $\pi^0\pi^0\eta$ with 1 pole and 2 channels
	- \rightarrow (K π)_S-wave: fixed parameterization from FOCUS-experiment
- Breit-Wigner description for
	- $\rightarrow \Phi(1020) \rightarrow K^+ K^-$
	- \rightarrow K^{*}^{\pm}(892) \rightarrow K^{\pm} π ⁰
- Scattering data are taken into account for $\pi \pi \to \pi \pi$ and $\pi \pi \to K\overline{K}$, $\eta \eta$, $\eta \eta'$ Best Fit Result achieved for

nnels

nnels

nd 2 channels, each

pole and 2 channels

eterization from FOCUS-experiment

r

f

nto account for $\pi\pi \to \pi\pi$ and $\pi\pi \to K\overline{K}$, $\eta\eta$, $\eta\eta'$

Phys. Rev. D83(2011) 074004 Nucl. Phys B64 (1973) 134-162 Nucl. Phys B100 (1975) 205-224 J. Phys G40 (2013) 043001 Nucl. Phys B64 (1973) 134-162 Nucl. Phys B269 (1986) 485 Nouvo Cimento A80 (1984) 363

all pole positions and coupling strengths are free parameters

$\bar{\mathsf{p}}$ p → K*K⁻πº, πºπºη, πºηη @ 900 MeV/c

 1^{-+} Wave in $\bar{p}p \rightarrow \pi^0 \pi^0 \eta$

- 1⁻⁺ wave seen in the decay $\pi^0 \eta$
- K-matrix description with 1 pole and two channels $\pi\eta$ and $\pi\eta'$
	- \geq no data for π η' and only used for unitarity
- Phase difference between the π_1 and a_2 wave from $T_{\pi_1\to\pi_1}$ in good agreement with COMPASS measurement
- Obtained pole parameters consistent with $\pi_1(1400)$

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024 Bertram Kopf, Ruhr-Universität Bochum

Phys. Lett. B740 (2015) 303-311 Phys. Lett. B811 (2020) 135913 (erratum)

JPAC Analysis of COMPASS Data

- Coupled channel analysis of the 1⁻⁺ and 2⁺⁺ wave in π $p \rightarrow \pi$ - η ^{(\cdot}) p
- Enforcing analyticity and unitarity utilizing N/D method
- Mass shapes and phase shifts between 1^+ and 2^{++} are considered
- Peak at 1.4 GeV/c² in $\pi\eta$ and 1.6 GeV/c² in $\pi\eta$ ' are described by one pole at $(1564 \pm 24 \pm 86) - i(246 \pm 27 \pm 51)$ MeV

Coupled Channel Analysis with $\bar{p}p$, $\pi\pi$ & COMPASS Data

- Extension: simultaneous fit of ππ-scattering data, $\bar{p}p \to K^*K^.\pi^0$, π 0 π 0 η, π 0 η η and π^- p $\rightarrow \pi^-$ η^(י) p
- Good description with one pole scenario for the 1^+ wave using K-matrix
	- ➢ confirmation of the JPAC analysis based on N/D-method

Coupled Channel Analysis with $\bar{p}p$, $\pi\pi$ & COMPASS Data

- $\bullet~~\pi_1$ mass is moving from 1.4 GeV/c 2 to 1.6 GeV/c 2 and consistent with π_1 (1600) with $\pi\eta^{\prime}$ data
- Additional decay channel $\pi\eta'$ essential for the proper determination of the π_1 pole position

Table 1 Obtained masses, total widths and ratios of partial widths for the pole of the spin-exotic π_1 -wave and for the two poles in the a_2 -wave, the $a_2(1320)$ and the $a_2(1700)$. The first uncertainty is the statistical and the second the systematic one

Name	Pole mass ($MeV/c2$)	Pole width (MeV)	$\Gamma_{\pi\eta}/\Gamma_{\pi\eta}$ (%)	$\Gamma_{KK}/\Gamma_{\pi\eta}$ (%)
$a_2(1320)$	$1318.7 \pm 1.9_{-1.3}^{+1.3}$	$107.5 \pm 4.6_{-1.8}^{+3.3}$	$4.6 \pm 1.5_{-0.6}^{+7.0}$	$31 \pm 22_{-11}^{+9}$
$a_2(1700)$	$1686 \pm 22 \frac{+19}{-7}$	$412 \pm 75 {+64 \atop -57}$	$3.5 \pm 4.4^{+6.9}_{-1.2}$	$2.9 \pm 4.0_{-1.2}^{+1.1}$
π_1	$1623 \pm 47_{-75}^{+24}$	$455 \pm 88_{-175}^{+144}$	$554 \pm 110^{+180}_{-27}$	
In agreement with LQCD calculations for the lightest hybrid, but uncertainties are large				Phys. Rev. D 103, 05402 (2021)

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024 Bertram Kopf, Ruhr-Universität Bochum

Coupled Channel Analysis with $\bar{p}p$, $\pi\pi$ & COMPASS Data

 $\pi \pi$ scattering data

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024 Bertram Kopf, Ruhr-Universität Bochum

- K-matrix contains all resonance parameters
- Masses and widths defined by the pole position in the complex energy plane of the T-matrix sheet closest to the physical sheet
- Related partial decay width can be extracted via the residues:

$$
Res_{k\to k}^{\alpha} = \frac{1}{2\pi i} \oint_{C_{z\alpha}} \sqrt{\rho_k} \cdot T_{k\to k}(z) \cdot \sqrt{\rho_k} \, dz
$$

More than 50 different resonance properties extracted on the relevant Riemann-sheets for f_0 , f_2 , a_0 , a_2 and ρ resonances

27

$\gamma\gamma\to$ K+K , π 0 π 0 , π 0 η @ BESIII

• Electromagnetic interaction of the $production \rightarrow access$ to the inner structure

 \overline{a}

- Gluon poor process with weak coupling of some resonances
- Fixed K-matrix parametrization used
- Good description with the K-matrix parametrization for f_0 , f_2 , a_0 and a_2 *Eur.Phys.J.C 80 (2020) 5, 453*

• Extraction of the $\gamma\gamma$ -widths via the pole

residues of the F-vector on the second Rieman-sheet

M. Küßner, PhD-Thesis, RUB (2022)

- Gluon rich process
- Electromagnetic part can be calculated by QED
- Multipole amplitudes give access to the transition form factors of the contributing resonances
	- \rightarrow access to the inner structure
	- \geq e.g. for production of conventional f₂ mesons consisting of qq pair: E1>M2>E3
- Single channel fits feasible in a model independent way for channels like $J/\psi \rightarrow \gamma \pi \pi$ or $J/\psi \rightarrow \gamma K\overline{K}$
	- \ge poor contributions of resonances in the $\gamma\pi$ and γ K systems
	- ➢ outcome can be used for mass dependent couple channel fits

J/ψ–>γπ $^{\rm o}$ π $^{\rm o}$ @ BESIII

- Independent fits for each mass bin
- Mass-independent fits lead to ambiguities \rightarrow here 2 solutions (marked in black and red)
- 2⁺⁺ wave: E1 dominates over M2 and E3

BESIII: Phys.Rev.D 92, 052003

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024 Bertram Kopf, Ruhr-Universität Bochum

Amplitudes Phase Differences

Coupled Cannel Analysis with radiative J/ψ Decays

- Mass-independent fit results for J/ $\psi\to\gamma\pi^0\pi^0$ and J/ $\psi\to\gamma$ K $_{\rm s}$ K $_{\rm s}$ used as input for coupled channel analyses
- JPAC
	- \rightarrow mass range: 1 2.5 GeV
	- \rightarrow f₀ and f₂ E1-wave are taken into account
	- \geq 2- and 3-channel fit with coupled channel N/D formalism
	- ➢ identification of 4 scalar and 3 tensor states

Summary

- Event based maximum likelihood fits of the complete phase space often needed
	- \rightarrow consideration of the complete reaction chain from the initial to the final states
	- ➢ structures originated from reflections or interference effects are better under control
- Approaches with an adequate consideration of analyticity and unitarity important for the description of the dynamics
	- ➢ Breit-Wigner functions only a good approximation for isolated resonances appearing in a single channel
	- ➢ sophisticated formalisms like K-matrix with Chew-Mandelstam functions, N/D etc. are preferable
- Coupled channel analyses with a reasonable choice of channels can guarantee a good approach to unitarity with access to (almost) all K-matrix parameters
- Fit examples
	- \ge one-pole scenario can describe the π_1 peak in π η at 1.4 GeV and in π η' at 1.6 GeV
	- ➢ coupled channel fits using the outcome of model-independent single channel analyses