

Bertram Kopf

Coupled Channel Analysis from the Users Point of View

Modern Techniques in Hadron Spectroscopy RUB, 15.-27. July 2024

Data Analysis in Hadron Spectroscopy

- Find (all) existing resonances and measure precisely their properties
 - > unambiguous determination of their quantum numbers
 - > accurate measurement of the pole positions (masses and widths)
 - > determination of the coupling strengths of the production and decay

- Partial Wave Analysis (PWA) is needed to determine I^G(J^{PC})-quantum numbers and to find even new resonances
- Fits in the complete n-dimensional phase-space are in general necessary
 - consideration of the complete decay chain for the initial up to the final state

Quantum Mechanics

Interference effects play an essential role

Example: $\bar{p}p \rightarrow \pi^0 \pi^0 \pi^0$ at rest (Crystal Barrel @ LEAR)

- Reaction chain can be fully described by 2 dimensions \rightarrow Dalitzplot
- Quantum mechanical effects become clearly visible through interference patterns and are needed to be taken into account in the PWA
- Description of the probability density function (PDF) by quantum mechanical waves is needed

General PWA Strategy

- Extraction of the complete transition amplitude $\mathcal{M}(k_1, ..., k_N)$
- $|\mathcal{M}(k_1, ..., k_N)|^2$ accessible
 - ► (in)coherent sum of the amplitudes of all waves with all individual intermediate resonances

PWA: fitting experimental data to obtain weights (complex amplitudes) C₁, C₂, ...

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Bertram Kopf, Ruhr-Universität Bochum

Unbinned Maximum Likelihood Method

- Dalitzplots can be provided by binned data and thus fitted by a χ^2 minimization
- Phasespace of the most channels of interest contains more than 2 dimensions and are more complex
- Event-based fits by making use of the unbinned likelihood method

- Logarithm of likelihood function for PWA
 - > nominator: sum over data
 - > denominator: sum over reconstructed phasespace distributed events

Why Fits in the n-dimensional Phasespace?

Peaks in the invariant mass spectrum are not necessarily originating from resonances

Example: $\eta_c \rightarrow a_2(1320) \pi^0 \rightarrow (\pi^0 \eta) \pi^0$

- 2 additional peaks visible in $M(\pi^0\eta)$
- 3 additional peaks visible in $M(\pi^0\pi^0)$

Why Fits in the n-dimensional Phasespace?

- Dalitzplot
 - > flat for phasespace distributed events: $|\mathcal{M}(k_1, ..., k_N)|^2 = \text{const}$
 - > structures (bands) at $m_{ab}^2 = m_X$ for resonances X decaying to X \rightarrow a b
 - > density distribution along the band are related to the decay angular distribution of the resonance
- Decay angular distribution of the $a_2(1320)$ in the helicity frame: $D^2_{00} \sim (\cos^2\theta 1/3)^2$
- Additional peaks are originating from decay angular distribution of the a₂(1320)
- Interpretation of the structures in higher dimensional phasespace is much more difficult

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Spin Formalisms

- Different spin formalisms on the market
 - > needed for the determination of the quantum numbers
 - > mainly differ in the choice of the spin quantization
 - > all of them have their pros and cons
- Helicity formalism
 - > decay characteristics based on Wigner-D rotation matrix $D^{J_X}_{\lambda_{J_Y}\lambda_a-\lambda_b}(\phi,\theta,-\phi)$
 - > easy to use for sequential decays
 - > pure helicity amplitudes does not contain information about the angular moments of the decay processes
 - > descriptions could be complicated for final state particles with spin (J>0) due to extrarotations
- Spin-orbit (LS) formalism
 - > decay characteristics based on spherical harmonic functions $Y_L^m(\theta,\phi)$
 - > easy access to the L-dependent barrier factors
 - simple transformation between helicity and LS-amplitudes

$$F_{\lambda_a \ \lambda_b} = \sum_{LS} \alpha_{LS} \sqrt{\frac{2J_X + 1}{2L + 1}} < J_a, \lambda_a, J_b, -\lambda_b | S, \lambda_a - \lambda_b > < L, 0, S, \lambda_a - \lambda_b | J_X, \lambda_a - \lambda_b >$$

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Bertram Kopf, Ruhr-Universität Bochum

Spin Formalisms

- Non-relativistic Tensor formalism (Zemach formalism)
 - > only 3-vectors are taken into account
- Relativistic Tensor formalism (Rarita-Schwinger formalism)
 - Lorenz-invariant description using 4-vectors, polarization vectors, orbital momentum tensors, spin-projection tensors, ...
 - > choice of any reference frame possible
 - momentum dependent barrier factor (p^L-dependence) is automatically taken into account
 - elegant for final state particles with spin (J>0)
 - > difficult and very computationally intensive for large L and S
- Multipole amplitudes
 - > suitable choice for radiative decays
 - electric and magnetic multipoles give access to the transition form factors
 - > simple transformation between helicity and multipole amplitudes

Dynamics

- Breit-Wigner functions widely used
 - > good approximation for isolated resonances appearing in a single channel
 - extracted resonance parameters are not unique and depend on the production and decay process
- More sophisticated descriptions needed for
 - resonances decaying into multiple channels
 - > several resonances with the same quantum numbers appearing in the same channel
 - \succ resonances located at thresholds \rightarrow distortion of the line shape

Approaches with an adequate consideration of unitarity and analyticity needed (K-matrix, N/D-method, Two-potential decomposition)

K-Matrix

Aitchison: "Nucl Phys A189 (1972) 417

S.U. Chung, E.Klempt "A Primer on K-matrix Formalism", BNL Preprint (1995)

• A two body scattering process can be fully described by the S-matrix

$$S = I + 2i\sqrt{\rho} T \sqrt{\rho}$$

• T-matrix can be expressed by K-matrix:

$$T = (I - i K \rho)^{-1} K$$

• Example: channel 1: $\pi\pi$, channel 2: K \overline{K}

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

K-Matrix with P-Vector Approach

Aitchison: "The K-Matrix formalism for overlapping resonances", Nucl Phys A189 (1972) 417

- Generalization of the K-matrix formalism to the case of production of resonances in more complex reactions
- Dynamical function for P-vector approach: $F = (I i K \rho)^{-1} P$

• Example: $\overline{p}p \rightarrow f_0 \pi^0 \rightarrow (K\overline{K}) \pi^0$

• Parameters in the fit (free or fixed): $g_{\alpha i}$, β_{α} , m_{α} , C_{kij} , C_{ki}

Scattering Process: K-Matrix vs. Breit Wigner

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Analyticity

- Below thresholds proper analytical continuations are needed (e.g. KK channel in the region between ππ and KK threshold)
- K-matrix with standard phase space factors: $\rho = \sqrt{\left[1 \left(\frac{m_a + m_b}{m}\right)^2\right] \cdot \left[1 \left(\frac{m_a m_b}{m}\right)^2\right]}$
 - violates constraints from analyticity: unphysical cuts for unequal masses
- Proper description with Chew-Mandelstam function from
 - > above threshold: $\rho(s) = Im(CM(s))$
 - > $T = (I i K \rho)^{-1} K$ replaced by $T = (I + K C M(s))^{-1} K$

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Coupled Channel Analysis

- Single channel fits
 - > access to only one production mode and one decay channel
 - unitarity cannot be adequately taken into account due to lack of other relevant channels
 - K-matrix difficult to use, as only the coupling strengths to the relevant single channel can be determined
 - > Breit-Wigner can often be only used
 - outcome of model- (mass-)independent fits can provide valuable input for coupled channel analyses
- Advantages of coupled channel fits
 - > usage of common and unique description of the dynamics possible
 - better description of threshold effects
 - better fulfillment of the conservation of unitarity
 - > more constraints due to common amplitudes

Choice of suitable Channels

- Channels with small number of final state particles
 - Iess complex due to small dimensions of the phasespace
 - reflections better under control
- (All) decay channels that have significant coupling to the resonances
 - > guaranties an adequate consideration of unitarity
 - access to all relevant g-factors
 - access to final state interaction that might occur
- $\pi\pi$ (or K π -) scattering data
 - > process only characterized by elasticity and phase motion
 - good and easy access to the resonances
 - very helpful for the normalization of the g-factors with regard to the unitarity

Examples in the Filed of Light Meson Spectroscopy

- Light mesons are bound states consisting of u-, d- and s-quarks
- Cover the non-perturbative QCD regime
- Description very challenging
 - Iattice QCD
 - > phenomenological models
- Observation and measurements of the resonance properties very challenging
 - many overlapping resonances with same quantum numbers
 - resonances decay in different channels
 - distinction between conventional qq̄mesons and exotics difficult

energy dependence of α_s

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Research Topic: Glueballs and Hybrids

2.5

- A doubtless evidence for exotics are the observation of resonances with spin-exotic quantum numbers which are forbidden for qq-mesons
- LQCD: lightest glueballs with spin-exotic quantum numbers J^{PC}= 0⁺⁻, 1⁻⁺, 2⁺⁻ above 4 GeV/c²
- Glueballs in the light meson mass range only with non exotic quantum numbers $J^{PC}=0^{++}, 0^{-+}, 2^{++}$ predicted
- Lightest hybrid state expected just below 2 GeV/c² with exotic quantum numbers I^G(J^{PC}) = 1⁻(1⁻⁺)
 - 2 π₁ candidates below 2 GeV listed in the PDG
 - π₁(1400): only observed in the decay
 to πη
 - π₁(1600): observed in several decay channels

PWA with $\bar{p}p$ Data from Crystal Barrel at LEAR

- Fixed target experiment at CERN
- In operation between 1989 and 1996
- $\bar{p}p$ annihilation at rest and in flight
 - > highest beam momentum 1.94 GeV/c
- Physics program
 - spectroscopy of light mesons and search for exotic states

Eur. Phys.J. C (2020) 80, 453

Crystal Barrel Collaboration

Coupled channel analysis of $\bar{p}p \rightarrow \pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $K^+ K^- \pi^0$ at 900 MeV/c and of $\pi \pi$ -scattering data

$\overline{p}p \rightarrow K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}\pi^{\scriptscriptstyle 0}, \, \pi^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle 0}\eta, \, \pi^{\scriptscriptstyle 0}\eta\eta \textcircled{@} 900 \text{ MeV/c}$

Best Fit Result achieved for

- K-matrix description for
 - > f₀ with 5 poles and 5 channels
 - > f₂ with 4 poles and 4 channels
 - $\succ \rho$ with 2 poles and 3 channels
 - > a₀ and a₂ with 2 poles and 2 channels, each
 - > $\pi_1^0 \rightarrow \pi^0 \eta$ in $\pi^0 \pi^0 \eta$ with 1 pole and 2 channels
 - > $(K\pi)_s$ -wave: fixed parameterization from FOCUS-experiment
- Breit-Wigner description for
 - $\succ \Phi(1020) \rightarrow \mathrm{K}^{\scriptscriptstyle +} \mathrm{K}^{\scriptscriptstyle -}$
 - > $K^{*\pm}(892) \rightarrow K^{\pm}\pi^{0}$
- Scattering data are taken into account for $\pi\pi \rightarrow \pi\pi$ and $\pi\pi \rightarrow K\overline{K}$, $\eta\eta$, $\eta\eta'$

Phys. Rev. D83(2011) 074004 Nucl. Phys B64 (1973) 134-162 Nucl. Phys B100 (1975) 205-224 J. Phys G40 (2013) 043001 Nucl. Phys B64 (1973) 134-162 Nucl. Phys B269 (1986) 485 Nouvo Cimento A80 (1984) 363 all pole positions and coupling strengths are free parameters

$\overline{p}p \rightarrow K^{+}K^{-}\pi^{0}$, π⁰π⁰η, π⁰ηη @ 900 MeV/c

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

1⁻⁺ Wave in $\overline{p}p \rightarrow \pi^0 \pi^0 \eta$

- 1⁻⁺ wave seen in the decay $\pi^0\eta$
- K-matrix description with 1 pole and two channels $\pi\eta$ and $\pi\eta'$
 - > no data for $\pi\eta$ ' and only used for unitarity
- Phase difference between the π_1 and a_2 wave from $T_{\pi\eta \to \pi\eta}$ in good agreement with COMPASS measurement
- Obtained pole parameters consistent with $\pi_1(1400)$

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Bertram Kopf, Ruhr-Universität Bochum

Phys. Lett. B740 (2015) 303-311 Phys. Lett. B811 (2020) 135913 (erratum)

JPAC Analysis of COMPASS Data

- Coupled channel analysis of the 1⁻⁺ and 2⁺⁺ wave in $\pi^- p \rightarrow \pi^- \eta^{(+)} p$
- Enforcing analyticity and unitarity utilizing N/D method
- Mass shapes and phase shifts between 1⁻⁺ and 2⁺⁺ are considered
- Peak at 1.4 GeV/c² in $\pi\eta$ and 1.6 GeV/c² in $\pi\eta$ ' are described by one pole at (1564 ± 24 ± 86) i(246 ± 27 ± 51) MeV

Coupled Channel Analysis with $\overline{p}p$, $\pi\pi$ & COMPASS Data

- Extension: simultaneous fit of $\pi\pi$ -scattering data, $\overline{p}p \rightarrow K^+ K^- \pi^0$, $\pi^0 \pi^0 \eta$, $\pi^0 \eta \eta$ and $\pi^- p \rightarrow \pi^- \eta^{(4)} p$
- Good description with one pole scenario for the 1⁻⁺ wave using K-matrix
 - > confirmation of the JPAC analysis based on N/D-method

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Coupled Channel Analysis with pp, ππ & COMPASS Data

- π_1 mass is moving from 1.4 GeV/c² to 1.6 GeV/c² and consistent with $\pi_1(1600)$ with π_{η} ' data
- Additional decay channel $\pi\eta$ ' essential for the proper determination of the π_1 pole position

Table 1 Obtained masses, total widths and ratios of partial widths for the pole of the spin-exotic π_1 -wave and for the two poles in the a_2 -wave, the $a_2(1320)$ and the $a_2(1700)$. The first uncertainty is the statistical and the second the systematic one

Name	Pole mass (MeV/ c^2)	Pole width (MeV)	$\Gamma_{\pi\eta'}/\Gamma_{\pi\eta}$ (%)	$\Gamma_{KK}/\Gamma_{\pi\eta}$ (%)	
<i>a</i> ₂ (1320)	$1318.7 \pm 1.9 ^{+1.3}_{-1.3}$	$107.5 \pm 4.6 \substack{+3.3 \\ -1.8}$	$4.6 \pm 1.5 \substack{+7.0 \\ -0.6}$	$31 \pm 22^{+9}_{-11}$	
$a_2(1700)$	$1686 \pm 22 {}^{+19}_{-7}$	$412 \pm 75 {}^{+64}_{-57}$	$3.5 \pm 4.4 \substack{+6.9 \\ -1.2}$	$2.9 \pm 4.0 {}^{+1.1}_{-1.2}$	
π_1	$1623 \pm 47^{+24}_{-75}$	$455 \pm 88^{+144}_{-175}$	$554 \pm 110 {}^{+180}_{-27}$	_	
		•			
In agreement with LQCD calculations for the lightest hybrid, but uncertainties are large				Phys. Rev. D 103, 05402 (2021)	

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Coupled Channel Analysis with $\overline{p}p$, $\pi\pi$ & COMPASS Data

 $\pi \pi$ scattering data

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

- K-matrix contains all resonance parameters
- Masses and widths defined by the pole position in the complex energy plane of the T-matrix sheet closest to the physical sheet
- Related partial decay width can be extracted via the residues:

$$Res_{k\to k}^{\alpha} = \frac{1}{2\pi i} \oint_{C_{z\alpha}} \sqrt{\rho_k} \cdot T_{k\to k}(z) \cdot \sqrt{\rho_k} \, dz$$

More than 50 different resonance properties extracted on the relevant Riemann-sheets for f_0 , f_2 , a_0 , a_2 and ρ resonances

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

$γγ → K^+K^-$, π⁰π⁰, π⁰η @ BESIII

- Electromagnetic interaction of the production → access to the inner structure
- Gluon poor process with weak coupling of some resonances
- Fixed K-matrix parametrization used
- Good description with the K-matrix parametrization for f₀, f₂, a₀ and a₂ *Eur.Phys.J.C 80 (2020) 5, 453*

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

M. Küßner, PhD-Thesis, RUB (2022)

 Extraction of the γγ-widths via the pole residues of the F-vector on the second Rieman-sheet

Radiative J/ ψ Decays @ BESIII

- Gluon rich process
- Electromagnetic part can be calculated by QED
- Multipole amplitudes give access to the transition form factors of the contributing resonances
 - > access to the inner structure
 - > e.g. for production of conventional f_2 mesons consisting of $q\bar{q}$ pair: E1>M2>E3
- Single channel fits feasible in a model independent way for channels like $J/\psi \rightarrow \gamma \pi \pi$ or $J/\psi \rightarrow \gamma K \overline{K}$
 - \succ poor contributions of resonances in the $\gamma\pi$ and γK systems
 - > outcome can be used for mass dependent couple channel fits

J/ ψ ->γ $\pi^0\pi^0$ @ BESIII

- Independent fits for each mass bin
- Mass-independent fits lead to ambiguities \rightarrow here 2 solutions (marked in black and red)
- 2⁺⁺ wave: E1 dominates over M2 and E3

BESIII: Phys.Rev.D 92, 052003

2.5

2.5

2.5

30

3.0

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Coupled Cannel Analysis with radiative J/ ψ Decays

- Mass-independent fit results for $J/\psi \rightarrow \gamma \pi^0 \pi^0$ and $J/\psi \rightarrow \gamma K_s K_s$ used as input for coupled channel analyses
- JPAC
 - > mass range: 1 2.5 GeV
 - > f₀ and f₂ E1-wave are taken into account
 - > 2- and 3-channel fit with coupled channel N/D formalism
 - identification of 4 scalar and 3 tensor states

31

Modern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Summary

- · Event based maximum likelihood fits of the complete phase space often needed
 - consideration of the complete reaction chain from the initial to the final states
 - structures originated from reflections or interference effects are better under control
- Approaches with an adequate consideration of analyticity and unitarity important for the description of the dynamics
 - Breit-Wigner functions only a good approximation for isolated resonances appearing in a single channel
 - sophisticated formalisms like K-matrix with Chew-Mandelstam functions, N/D etc. are preferable
- Coupled channel analyses with a reasonable choice of channels can guarantee a good approach to unitarity with access to (almost) all K-matrix parameters
- Fit examples
 - > one-pole scenario can describe the π_1 peak in $\pi\eta$ at 1.4 GeV and in $\pi\eta'$ at 1.6 GeV
 - > coupled channel fits using the outcome of model-independent single channel analyses