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Data Analysis in Hadron Spectroscopy

● Find (all) existing resonances and measure precisely their properties

➢ unambiguous determination of their quantum numbers 

➢ accurate measurement of the pole positions (masses and widths)

➢ determination of the coupling strengths of the production and decay    

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Partial Wave Analysis (PWA)  is needed to determine IG(JPC)-quantum numbers

and to find even new resonances  

● Fits in the complete n-dimensional phase-space are in general necessary

► consideration of the complete decay chain for the initial up to the final state   
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Quantum Mechanics

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Example: pp → p0 p0 p0 at rest (Crystal Barrel @ LEAR)

● Reaction chain can be fully described by 2 dimensions → Dalitzplot

● Quantum mechanical effects become clearly visible through interference patterns 

and are needed to be taken into account in the PWA 

● Description of the probability density function (PDF) by quantum mechanical 

waves is needed   

Interference effects play an essential role
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General PWA Strategy

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Extraction of the complete transition amplitude M(k1, …, kN)  

● |M(k1, …, kN)|2 accessible

► (in)coherent sum of the amplitudes of all waves with all individual intermediate resonances     

=
res. 1

+
res. 2

+...

M(k1, …, kN)         =       C1 Ares1(k1, …, kN)       +      C2 Ares2(k1, …, kN)      +  ...

PWA: fitting experimental data to obtain weights (complex amplitudes) C1, C2, ...     
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Unbinned Maximum Likelihood Method

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Dalitzplots can be provided by binned data and thus fitted by a c2 - minimization

● Phasespace of the most channels of interest contains more than 2 dimensions and 

are more complex 

● Event-based fits by making use of the unbinned likelihood method

● General likelihood function:

● Logarithm of likelihood function for PWA 

➢ nominator: sum over data

➢ denominator: sum over reconstructed phasespace distributed events

n events probability at ti efficiency at ti

phasespace integral
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Why Fits in the n-dimensional Phasespace?

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

   Peaks in the invariant mass spectrum are 

 not necessarily originating from resonances

Example: hc → a2(1320) p0 → (p0 h) p0

a2(1320)

● 2 additional peaks visible in M(p0h)

● 3 additional peaks visible in M(p0p0) 
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Why Fits in the n-dimensional Phasespace?

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Dalitzplot
➢ flat for phasespace distributed events: |M(k1, …, kN)|2 = const
➢ structures (bands) at m2

ab = mX for resonances X decaying to X → a b
➢ density distribution along the band are related to the decay angular distribution of the 

resonance

● Decay angular distribution of the a2(1320) in the helicity frame: D2
00 ~ (cos2q -1/3)2  

● Additional peaks are originating from decay angular distribution of the a2(1320)

● Interpretation of the structures in higher dimensional phasespace is much more difficult 

I(cosq)~ (D2
00)2 ~ (cos2Q - 1/3)2 

mass shape 
of the a2(1320)

decay angle cosQ  
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● Different spin formalisms on the market

➢ needed for the determination of the quantum numbers

➢ mainly differ in the choice of the spin quantization

➢ all of them have their pros and cons

● Helicity formalism

➢ decay characteristics based on Wigner-D rotation matrix

➢ easy to use for sequential decays

➢ pure helicity amplitudes does not contain information about the angular moments of the 

decay processes

➢ descriptions could be complicated for final state particles with spin (J>0) due to extra-

rotations  

● Spin-orbit (LS) formalism

➢ decay characteristics based on spherical harmonic functions

➢ easy access to the L-dependent barrier factors

➢ simple transformation between helicity and LS-amplitudes

 

Spin Formalisms

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024
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● Non-relativistic Tensor formalism (Zemach formalism)

➢ only 3-vectors are taken into account

● Relativistic Tensor formalism (Rarita-Schwinger formalism)

➢ Lorenz-invariant description using 4-vectors, polarization vectors, orbital momentum 

tensors, spin-projection tensors, ...

➢ choice of any reference frame possible

➢ momentum dependent barrier factor (pL-dependence) is automatically taken into 

account

➢ elegant for final state particles with spin (J>0)

➢ difficult and very computationally intensive for large L and S

● Multipole amplitudes 

➢ suitable choice for radiative decays

➢ electric and magnetic multipoles give access to the transition form factors  

➢ simple transformation between helicity and multipole amplitudes

Spin Formalisms

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024
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Dynamics

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Breit-Wigner functions widely used                                                                       

➢ good approximation for isolated resonances appearing in a single channel                           

➢ extracted resonance parameters are not unique and depend on the production and decay 

process                                                                                                                           

● More sophisticated descriptions needed for                                                           

➢ resonances decaying into multiple channels                                                         

➢ several resonances with the same quantum numbers appearing in the same channel         

➢ resonances located at thresholds → distortion of the line shape              

Approaches with an adequate consideration 

of unitarity and analyticity needed 

(K-matrix, N/D-method, Two-potential decomposition)  
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K-Matrix

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● A two body scattering process can be fully described by the S-matrix  

● T-matrix can be expressed by K-matrix:   

● Elements of the K-matrix:    

S.U. Chung, E.Klempt „A Primer on K-matrix Formalism“, BNL Preprint (1995)

Aitchison: „Nucl Phys A189 (1972) 417

● Example: channel 1: pp, channel 2: K K   

bare mass 
of resonance a

energy dependent
background term

K-matrix element for channel
i (initial) and j (final)

bare coupling to channel i an j of resonance a
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K-Matrix with P-Vector Approach

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Dynamical function for P-vector approach:                                                                                

                                                           

                                                           with: 

Aitchison: „The K-Matrix formalism for overlapping resonances“, Nucl Phys A189 (1972) 417

● Generalization of the K-matrix formalism to the case of production of resonances in 

more complex reactions

● Example: pp → f0 p0 → (KK) p0

    
    

    
   

same pole structure
 as for K-matrix          

f0

p0 (recoil)

pp

K

K

bare coupling to the production of resonance a

● Parameters in the fit (free or fixed): gai, ba, ma, ckij, cki 
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Scattering Process: K-Matrix vs. Breit Wigner

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

2 nearby Poles 1 Channel

● ma= 1.27 GeV/c2  
● mb= 1.56 GeV/c2       

K-Matrix
2 Breit-Wigner

K. Peters
Int.J.Mod.Phys. A21 (2006) 5618-5624

 hep-ph/0412069

1 Pole 2 Channels

K-Matrix
Breit-Wigner

● a0(980) with coupling to 
h p and K K

KK-threshold
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Analyticity

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Below thresholds proper analytical continuations are needed (e.g. KK channel in the region 

between pp and KK threshold)                           

● K-matrix with standard phase space factors:                            

➢ violates constraints from analyticity: unphysical cuts for unequal masses                                 

● Proper description with Chew-Mandelstam function from                                  

➢ above threshold: r(s)  = Im( CM(s) )                                                                  

➢                                    replaced by 
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● Single channel fits

➢ access to only one production mode and one decay channel

➢ unitarity cannot be adequately taken into account due to lack of other relevant 

channels

➢ K-matrix difficult to use, as only the coupling strengths to the relevant single channel 

can be determined

➢ Breit-Wigner can often be only used

➢ outcome of model- (mass-)independent fits can provide valuable input for coupled 

channel analyses 

● Advantages of coupled channel fits

➢ usage of common and unique description of the dynamics possible

➢ better description of threshold effects

➢ better fulfillment of the conservation of unitarity

➢ more constraints due to common amplitudes               

Coupled Channel Analysis

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024
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● Channels with small number of final state particles

➢ less complex due to small dimensions of the phasespace 

➢ reflections better under control
     

● (All) decay channels that have significant coupling to the resonances

➢ guaranties an adequate consideration of unitarity

➢ access to all relevant g-factors

➢ access to final state interaction that might occur 
   

● pp- (or Kp-) scattering data

➢ process only characterized by elasticity and phase motion

➢ good and easy access to the resonances

➢ very helpful for the normalization of the g-factors with regard to the unitarity  

               

Choice of suitable Channels

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024
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Examples in the Filed of Light Meson Spectroscopy

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Light mesons are bound states consisting of 

u-, d- and s-quarks
         

● Cover the non-perturbative QCD regime

● Description very challenging                      

➢ lattice QCD                                                    

➢ phenomenological models 
                            

● Observation and measurements of the 

resonance properties very challenging           

➢ many overlapping resonances with same 

quantum numbers                               

➢ resonances decay in different channels         

➢ distinction between conventional qq-

mesons and exotics difficult           

energy dependence of as

particle
physics

hadron
physics

nuclear
physics
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Research Topic: Glueballs and Hybrids

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

           

Phys.Rev. D73 (2006) 014516

Phys.Rev. D84 (2011) 074023

● LQCD: lightest glueballs with spin-exotic quantum numbers 
JPC= 0+-, 1-+, 2+- above 4 GeV/c2 

● Glueballs in the light meson mass range only with non exotic 

quantum numbers  JPC= 0++, 0-+, 2++ predicted          
     

● Lightest hybrid state expected just below 
2 GeV/c2 with exotic quantum numbers 
IG(JPC) = 1- (1- +) 

➢ 2 p1 candidates below 2 GeV listed in 
the PDG

➢ p1(1400): only observed in the decay 
to ph

➢ p1(1600): observed in several decay 
channels                                               
  

● A doubtless evidence for exotics are the observation of 
resonances with spin-exotic quantum numbers which 
are forbidden for qq-mesons                                             
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PWA with pp Data from Crystal Barrel at LEAR

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Fixed target experiment at CERN                  

● In operation between 1989 and 1996             

● pp annihilation at rest and in flight                   

➢ highest beam momentum 1.94 GeV/c        

● Physics program                                             

➢ spectroscopy of light mesons and search for 

exotic states                                                   

Crystal Barrel CollaborationEur. Phys.J. C (2020) 80, 453
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pp → K+K-p0, p0p0h, p0hh @ 900 MeV/c

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● K-matrix description for 

➢ f0 with 5 poles and 5 channels

➢ f2 with 4 poles and 4 channels

➢ r with 2 poles and 3 channels

➢ a0 and a2  with 2 poles and 2 channels, each

➢ p1
0 → p0h in p0p0h with 1 pole and 2 channels 

➢ (Kp)S-wave: fixed parameterization from FOCUS-experiment                         

● Breit-Wigner description for
➢ F(1020) → K+ K-

➢ K*±(892) → K± p0

● Scattering data are taken into account for pp → pp and pp → KK, hh, hh  ’

Best Fit Result achieved for

all pole positions and
coupling strengths

are free parameters

Phys. Rev. D83(2011) 074004

Nucl. Phys B64 (1973) 134-162

Nucl. Phys B100 (1975) 205-224

J. Phys G40 (2013) 043001

Nucl. Phys B64 (1973) 134-162

Nucl. Phys B269 (1986)  485

Nouvo Cimento A80 (1984) 363
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pp → K+K-p0, p0p0h, p0hh @ 900 MeV/c

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

pp →  p0p0h pp →  p0hhpp →  K+K-p0

Eur. Phys.J. C (2020) 80, 453

channel contribution %

K*(892) K 45.0 ±1.3 ±11.0

r p0 17.2 ±1.0 ±4.0

f2 p0 17.1 ±0.7 ±10.0

f0 p0 7.4 ±0.3 ±4.1

(Kp)S K 6.1 ±0.4 ±4.9

a2 p0 6.4 ±0.2 ±2.9

f p0 2.5 ±0.3 ±0.3

a0 p0 6.1 ±0.2 ±2.8

S 107.8 ±1.9 ±12.5

channel contribution %

f2 h 52.3 ±0.8 ±5.0

a2 p0 33.0 ±0.6 ±2.9

f0 h 10.7 ±0.4 ±1.8

a0 p0 22.4 ±0.4 ±1.0

p1 p0 16.7± 0.5± 3.0

S 135.0 ±1.2 ±8.7

channel contribution %

f0 p0 23.7 ±1.2 ±2.3

a2 h 18.8 ±1.1 ±5.6

a0 h 28.6 ±1.1 ±7.5

f2 p0 30.1 ±1.3 ±2.7

S 101.2 ±2.4 ±11.7

spin-exotic 1-+ contribution
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1-+ Wave in pp → p0p0h

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● 1-+ wave seen in the decay p0h                                                      

● K-matrix description with 1 pole and two channels ph and ph’

➢ no data for ph’ and only used for unitarity                                

● Phase difference between the p1 and a2 wave from Tph→ph in good 

agreement with COMPASS measurement                         

● Obtained pole parameters consistent with p1(1400)   

Phys. Lett. B740 (2015) 303-311
Phys. Lett. B811 (2020) 135913 (erratum)

COMPASS

pp analysis
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JPAC Analysis of COMPASS Data

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Coupled channel analysis of the 1-+ and 2++ wave in p- p → p- h(‘) p                

● Enforcing analyticity and unitarity utilizing N/D method                                    

● Mass shapes and phase shifts between 1-+ and 2++ are considered                

● Peak at 1.4 GeV/c2 in ph and 1.6 GeV/c2 in ph  ’ are described by one pole at 

(1564 ± 24 ± 86) – i(246 ± 27 ± 51) MeV                                                          

1.6 GeV

Phys. Rev. Lett. 122 (2019) 4, 042002

a2-wavep1-wave p1 – a2 phase difference1.4 GeV

data
fit

200 MeV/c2 shift of the peak position between mph and mph’

cannot be described by only one Breit-Wigner function



  24

Coupled Channel Analysis with pp, pp & COMPASS Data

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Extension: simultaneous fit of pp-scattering data, pp → K+ K- p0, p0 p0 h,  p0 h h  and 

p- p → p- h(‘) p                                                                                 

● Good description with one pole scenario for the 1-+ wave using K-matrix           

➢ confirmation of the JPAC analysis based on N/D-method    

p1-wave a2-wave p1 – a2  phase difference

Eur. Phys.J. C (2021) 81, 1056

1.4 GeV

1.6 GeV
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Coupled Channel Analysis with pp, pp & COMPASS Data

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

pp → p0 p0 h Eur. Phys.J. C (2021) 81, 1056

● p1 mass is moving from 1.4 GeV/c2 to 1.6 GeV/c2 and consistent with p1(1600) with ph’ data

● Additional decay channel ph’ essential for the proper determination of the p1 pole position 

In agreement with LQCD calculations for the lightest hybrid, 
but uncertainties are large

Phys. Rev. D 103, 05402 (2021)



  26

Coupled Channel Analysis with pp, pp & COMPASS Data

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

p p scattering data
Eur. Phys.J. C (2021) 81, 1056
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Extraction of Resonance Properties

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● K-matrix contains all resonance parameters

● Masses and widths defined by the pole position in the complex energy plane of the T-matrix 

sheet closest to the physical sheet

● Related partial decay width can be extracted via the residues:  

Example: f2-wave 

- 
G

/2
 [

G
eV

]

M [GeV/c2]

Tpp→pp (second sheet)

Gpp(f‘2(1525))

More than 50 different resonance properties extracted
on the relevant Riemann-sheets for f0, f2, a0, a2 and r resonances
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gg → K+K-, p0p0, p0h @ BESIII

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

               
● Electromagnetic interaction of the 

production → access to the inner structure

● Gluon poor process with weak coupling of 

some resonances

● Fixed K-matrix parametrization used

● Good description with the K-matrix 

parametrization for f0, f2, a0 and a2  

Eur.Phys.J.C 80 (2020) 5, 453    

               
● Extraction of the gg-widths via the pole 

residues of the F-vector on the second 

Rieman-sheet      

M. Küßner, PhD-Thesis, RUB (2022)
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Radiative J/y Decays @ BESIII

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Gluon rich process

● Electromagnetic part can be calculated by QED 

● Multipole amplitudes give access to the transition form factors of the contributing 

resonances 

➢ access to the inner structure

➢ e.g. for production of conventional f2 mesons consisting of qq pair: E1>M2>E3

● Single channel fits feasible in a model independent way for channels like J/y → gpp or  

J/y → gKK

➢ poor contributions of resonances in the gp and gK systems

➢ outcome can be used for mass dependent couple channel fits
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J/y->gp0p0 @ BESIII

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

Amplitudes Phase Differences

● Independent fits for each mass bin

● Mass-independent fits lead to ambiguities → here 2 solutions (marked in black and red)

● 2++ wave: E1 dominates over M2 and E3 
BESIII: Phys.Rev.D 92, 052003
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Coupled Cannel Analysis with radiative J/y Decays

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Mass-independent fit results for J/y → gp0p0 and J/y → gKsKs used as input for coupled 

channel analyses 

● JPAC

➢ mass range: 1 - 2.5 GeV

➢ f0 and f2 E1-wave are taken into account

➢ 2- and 3-channel fit with coupled channel N/D formalism 

➢ identification of 4 scalar and 3 tensor states

JPAC: Eur.Phys.J.C.82, 80 (2022)
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Summary

Bertram Kopf, Ruhr-Universität BochumModern Techniques in Hadron Spectroscopy, 15.-27.07.2024

● Event based maximum likelihood fits of the complete phase space often needed

➢ consideration of the complete reaction chain from the initial to the final states

➢ structures originated from reflections or interference effects are better under control
   

● Approaches with an adequate consideration of analyticity and unitarity important for the 

description of the dynamics

➢ Breit-Wigner functions only a good approximation for isolated resonances appearing in 

a single channel

➢ sophisticated formalisms like K-matrix with Chew-Mandelstam functions, N/D etc. are 

preferable
   

● Coupled channel analyses with a reasonable choice of channels can guarantee a good 

approach to unitarity with access to (almost) all K-matrix parameters
    

● Fit examples

➢ one-pole scenario can describe the p1 peak in ph at 1.4 GeV and in ph’ at 1.6 GeV

➢ coupled channel fits using the outcome of model-independent single channel analyses 
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