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Outline

Following SU Chung, Spin formalisms, https://suchung.web.cern.ch/spinfm1.pdf

See also Weinberg, the quantum theory of fields, vol |
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https://suchung.web.cern.ch/spinfm1.pdf

What is a particle?

Alice, Bob and Charlie are different observers, in relative motion

The intrinsic properties of a particle must be identical for all observers

I'm observing a proton

Group of symmetries of the space-time is the Poincare group

It has two invariant quantities: mass and spin
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States

Lorentz group include boosts and rotations Spelling out the matrix form
28 P |
P, | = Ra.p.p)| Py Ph= 2y Run(a:-B.10,,
/ p m=—1
P; L z
3x3 matrix
Lorentz group has other representations Explicit form
J N J —1
J D’ (o, p,y)=e"d (e "
/ _ DJ > ’
‘m> T m,m’(a9ﬁ9y)‘m>
m=—J ,
| Sin [
A spin J has 2J+1 component —J, ..., J Convention  d; 4(p) = —

2

Vincent Mathieu Helicity formalism 4



States at Rest

States are tensorial product

|p,m) = |p) ® |m)

Implicit dependence on M, s

Under a rotation,
the spin projection m changes

—

| et’s first consider state at rest p = 0

The spin projection m is defined by z axis

J
‘nf>:=‘}E/lxim(aaﬁ;r)“n>

m=—J

-
~

J
imy= ) d’ (B)|m) m

m=—J
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Boosted States - 5i6.—, Z

How do we boost from 0 to j3?

o 0) = R™!(¢,6.,0)|0)
po =70 ~
—— 7 po="0
—_— 7
5.) = L(p)|0) ) 5.) = L(p)| 0)
P; -
—_—y————y pz 7
|p) = R(¢, HO)MDZ |p) = R(¢,0,0)|p.) i
iw (6, $) é ) (0.9)
|p) = R(¢, H,O)Lz(p) | 5) |5) = R(¢, 0,0)L(p)R™(¢,6,0) | 0)
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Rotation of States

Helicity states Canonical states
|5, 4) = RIQ)L.(p) | 0, 1) |5, m) = REQL(p)R™1(Q)| 0, m)
S , - Y B.m) = R(QY -1(Q) |0,
R(Q) |5, 1) = R(Q R(QL.(p)] 0, 1) R(Q) | p,m) = RIQ)R()L,(p)R™ ()]0, m)

_ = R(Q'- QL(p)R™1(Q'- Q) R(Q')|0, m)
= R(Q' - Q)L(p) |0, )
= ) D, (Q)]|p,m’)

_ g . w42 N !
— |5 A) With 7' = R z With ' = RQ)p

Under a rotation, the helicity is conserved Under a rotation, the spin projection changes

Helicity is the spin projection on ]_5
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Boosting States

Consider two different frames

5) =BB < 0)|0)  |p) = B(p < 0)]0)

Related by a Lorentz transt. A(p < p)Ip) =1p)

Consider the cycle 0 — 5’ — 5 — 0
B(0 < p)A(p < p)B(p’ < 0) = R(Q2y)
The rest states | 6) can differ by a rotation!

A(p < P)B(p' < 0) = B(p «— 0)R(Qy)

So the spin projection rotates as well!

AP < P)|P,A) = ) D Q). 4)
~

Q2 is called the Wigner rotation
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Wigner Rotations

Under a Lorents boost, states undergo a Wigner rotation
AP < P)IP. Y = ) D5 (Qy) P, A)
ﬂ/
The Wigner rotation is determined by the boosting chain
R(Qy) = B(6 — D)A(p < p)B(p' < 6) Q, different for helicity and canonical

The boosts depend on the quantification!

Helicity states B(p < 6) = R(Qp)Lz(p)
Canonical states B(p « 6) = R(Qp)LZ(p)R_I(Qp)
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https://halldweb.jlab.org/DocDB/0048/004829/004/coordinates.pdf

A Concrete Example

GlueX coordinates systems + T
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Transformations of States

Helicity states Canonical states
P, A) = R(Q)L(p)|0, 1) | B,m) = RIQ)L(p)R™1(Q)]0, m)
RQ)|p,A)=1p,4)  wtp'=RQ% | R(Q)|p,m)y= Y DS, (Q)|p,m)

Under a rotation, the helicity is conserved Under a rotation, the spin projection changes

A < BB = Y Dy @QIBAY | AG <P B.m)y =Y D5, (95, 5.m')
~

m/

If p’ and p are parallel, the helicity is conserved In the NR limit, the helicity is conserved
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Transformations of Helicity States

5. 4) = RQL(p)|0, 1) S J= A
R(Q)|p,A) = |p’,A) With ' = R(Q)p Z
p o AEN
AP < PP Ay = ) Dj (Qy) 1P, 2) 2
~

If p’ and p are parallel, the helicity is conserved
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CoM = s-channel

Helicity Frame

s-channel \

p s-channel \ p Helicity \

_I_

The scattering amplitude depends
on helicities (which are frame dependent)

In the helicity frame, the resonance

has the same helicity as in the CoM
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CoM = s-channel

)2, Helicity \

_|_

Helicity Frame

In the helicity frame, the resonance
has the same helicity as in the CoM

I,
n -=>»

The scattering amplitude depends
on helicity (which are frame dependent)

D ALY, )

10,¢) < ) [ZA%,@,MY,}M, qs)] [ZA%,@,MY,}W(@, ¢>] = D P Y0, )Y, (6. ¢)

)

m

With P = Z Ap aam AL i m)™  p,, . is the same in the helicity frame and s-channel!
ol
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Gottfried-Jackson frame

Consider the reaction The crossed reaction is

_|_

n p The t-channel is
the CoM of the crossed reaction

In the GJ frame,
the resonance has the same
helicity as in the t-channel
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T-channel frame

Consider the reaction The crossed reaction is

n

In the GJ frame,
the resonance has the same

helicity as in the t-channel

Only p; 1 = p_; _1 IS non-zero!
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Frames In Meson Production

p s-channel \ D Helicity \

_|_

/

1o,
n -r=>» Z

P

In beam fragmentation:
Helicity frame: z is opposite to recoil nucleon

GJ frame: Z is parallel to beam

Y

—_ y ——>m----- > Z
Rotation of € between frames ; \
n

H _ J GJ J
pm,m’ o Z dxl,m(e) pm,m’ d}t’,m’(e)
1,47
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Baryon Production
14 s-channel \ 4 helicity \

/

P

In target fragmentation:

Helicity frame: z is opposite to recoil meson

Gottfried-dackson frame: z is parallel to target

Rotation of w between frames

H _ J GJ J
pm,m’ o Z d/l,m(a)) pm,m’ d/l’,m’(a))
1,47
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Wigner Rotation for Helicity states i}

—— e p
Helicity is the spin projection along the momentum / T
------- P’

The plan including p and p’ is the x — z plane

A < P)P.AY = Y d (@) |5, 2) P .
A .

First boost to rest frame POS
Helicity becomes spin projection along the former momentum

Then rotate to align the z to the future direction D
The spin projection changes /’ ik
Finally boost to the final momentum

The Wigner rotation is the angle between the two direction,
as seen from the particle rest frame
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Computing Wigner Rotation

Boosting from (23)RF to (123)RF will (Wigner) rotate the helicities of 2 and 3 (but not 1)

L(23)RF

W3 is the Wigner rotation of 3 from (23)RF to (123)RF

W37 Is the Wigner rotation of 3 from (31)RF to (123)RF

Vincent Mathieu Helicity formalism 20






Kaons

G.D. Rochester and C.C. Butler (1947) R. Brown et al (1949)
discovered two “V” tracks in cloud chamber discovered “K” tracks in cloud chamber

.

Source: https://www.cloudylabs.fr/wp/kaoninteractions/
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A baryon

Evidence Concerning the Existence of the New
Unstable Elementary Neutral Particle

V. D. HOPPER AND S. BISWAS
Department of Physics, University of Melbourne, Melbourne, Australia
October 30, 1950

Observation from cosmic rays of the decay
A -
—> DT
Unexpected long life-time 7 ~ 1()_10 S

Resonance typical life-time 7 ~ 107> s

R ,'
JU ar*

F1G. 1. Facsimile drawing which shows position of the two-pronged star
relative to a large star. The plane of the two-pronged star does not coincide

Vincent Mathieu

with the center of the large star. Track (a) corresponds to a meson and track
(b) to a proton.

]
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A baryon

At the end of this section it is worth to recall the reminiscences of
LETTERS TO THE EDITOR Gell-Mann [50]. “Now let me return to the paper that I did sent off in Au-

» . . gust 1953 ... . Isotopic Spin and the New Unstable Particles. That was not
ISOtOplC Spm and New Unstable Particles my title, which was: Isotopic Spin and Curious Particles. Physical Review
M. GELL-MANN rejected “Curious Particles”. I tried “Strange Particles” and they rejected
Department of Physics and Institute for Nuclear Studses, that too. They insisted on: “New Unstable Particles”. That was the only

University of Chicago, Chicago, Illinois . . . :
phrase sufficiently pompous for the editors of the Physical Review. I should

(Received August 21, 1953) , ,

| say that I have always hated the Physical Review Letters and almost twenty

Phys. Rev. 92 (1953) 833 years ago I decided never again to publish in that journal, but in 1953 I was
scarcely in the position to show around.”

Source: https://www.fuw.edu.pl/~ajduk/hyperakw.pdf

M. Gell-Mann
1929 - 2019

Long list of new particles with “strange” properties
K+ K% KV, A0, 2%, 30 5= =59, ..

19 listed resonances in 1957, 26 in 1963

Long life time, appear in pair, etc
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@ meson

EXISTENCE AND PROPERTIES OF THE ¢ MESON*

P. L. Connolly, E. L. Hart, K. W. Lai, G. London,T G. C. Moneti,¥ R. R. Rau,

N. P. Samios, I. O. Skillicorn, and S. S. Yamamoto
Brookhaven National Laboratory, Upton, New York

and

M. Goldberg, M. Gundzik, J. Leitner, and S. Lichtman
Syracuse University, Syracuse, New York

(Received 27 March 1963)

Phys. Rev. Lett. 10 (1963) 371
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Exp. collaboration becomes larger

Use of kaon beam 4+  —
~ 40 events in a single experiment

Don’'t seem to decay into pions + _—_0
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FIG. 1. Dalitz plot for the reaction K" +p —~ A +K +K,

The effective-mass distribution for KK and for AK' are
projected on the abscissa and ordinate (see reference 7).
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The eightfold way

Rotation in 3 real dimensions: angular momentum

Rotation in 2 complex dimensions: isospin

What about rotation in 3 complex dimensions?

"Flavor” is the generalization of isospin

E%®[]= EVBEF] !

3*F %3

1 +38

Vincent Mathieu

Both are mathematically equivalent!

_|_
® K S=+4+1
71'_/ '1 \ T T —0
\ ”//
® S=-1
K~ KO
O
© @\\ S
\ O P
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The eightfold way

Mesons split into a singlet and an octet

O
O
!
1

+ 1

B ® () = @@ B’_‘] o / : \ 5=

- QKO S5=-1
3% X 3 1 + 3 - P
o N
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The baryon octet

n p
2 @ S=0
_ JA \ +
2 / . 2 _
O O O S=-1
\ ZO /
O @ S=-12
O =0
_—
_—
O \ &
_— O \ \\X
N\ o _
\
7
Name Symbol | Isospin | Strangeness Mass (MeV/c?)
Nucleons N A 0 939
Octet Lambda baryons A 0 —1 1116
Sigma baryons > 1 -1 1193
Xi baryons = A -2 1318

Gell-Mann - Okubo mass relation

my + 3my = 2my + 2mx

Vincent Mathieu
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The baryon decuplet

A_ AO A_|_ A-l--l-
O O @ O S=0
\ . / > Mass difference = 153 MeV
> Z*O 4
o o o = §S=—1
\ / > Mass difference = 148 MeV
@ @ S=-2
E*_ E*O
\ / o > Mass difference ~ 150 MeV
N\
— _ @
= o &
— © <
N\
3 \
7
Name Symbol | Isospin Strangenessl Mass (MeV/c?) Prediction of a double Strange baryon
Deltabaryons | A 72 0 1232 with a negative electric charge and
becuple Sigma baryons | = 1 ~1 1385 a mass around 1680 MeV
Xi baryons =" Y, 2 1533 by Gell-Mann in 1962
Omega baryon Q 0 -3 1672
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Barnes et al Phys. Rev. Lett. 12 (1964) 204

Discovery of the {2~ baryon

Can you spot the €2~ baryon?

-7 +

Strange cascade:

Neutral particles (dashed lines)

don’t leave a track
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Three flavor of quarks
(ddu) (duu)

/ (uds) \ (uus)
(dds)
(dus)

- S=-2
(dSS)H (uss)
)
©
- © S N
\ o <

u (172 0 1/3 +2/3

d 1172 0 113 =1/3
s | o -1 1/3 —1/3

(ddd) (udd) (uud) (uuu)

A_ AO A+ A-l—-l—
S

\(dds) (ua’s) /uus)
§— _
(dk AS) G _n
r—w* ,—,>X<O

|
-

11
~
.

|
ek
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