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Concepts

Methods

Effective field theory, chiral perturbation theory, renormalization, 
predictive power, KSW vs Weinberg, power counting…

Effective Lagrangian, heavy-baryon expansion, perturbative calculation 
of the amplitude, methods to derive nuclear forces (and currents), …
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Effective theory:

For low-energy scattering of -particles, the heavy field  can be 

integrated out. Alternatively, write down the most general  for 

’s  respecting all symmetries of the underlying theory and fix  

the LECs from data…
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Scattering amplitude is computed via an expansion in powers of 

soft momenta. Vertices with more  are suppressed when using 

proper renormalization conditions (power counting).
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Part II: Chiral Perturbation Theory
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 Chiral perturbation theory

  expand about the ideal world (ChPT)⇒

Chiral perturbation theory

Ideal world [ ], zero-energy limit:  non-interacting massless GBs  

(+ strongly interacting massive hadrons)

mu = md = 0

Real world [ ], low energy:  weakly interacting light GBs (pions) 

(+ strongly interacting massive hadrons)

mu, md ≪ ΛQCD

 invariantSU(Nf)L × SU(Nf)R small for . Indeed:  MeV,  MeV (MS,  GeV)Nf = 2, (3) mu ∼ 3 md ∼ 5 μ = 2

LQCD = −

1

4
Gµν

a Ga,µν + q̄(iγµDµ −M)q

SSB to         GBsSU(Nf)V ≤ SU(Nf)L × SU(Nf)R ⇒ Nf
2 − 1

q = −

1

4
Gµν

a Ga,µν + q̄LiDqL + q̄RiDqR − qLMqR − qRMqL

1. Effective Lagrangian for pions

Chiral symmetry of QCD
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Pions transform linearly under isospin (iso-triplet):

Pions have to transform nonlinearly under chiral rotations  

(SU(2)L x SU(2)R ~ SO(4)    pion fields as coordinates on a 4-dimensional sphere) ⇒

Nonlinear field redefinitions of the kind                                          do not change physics         

  all nonlinear realizations of χ symmetry are equivalent     use the most convenient one!⇒ ⇒
Haag ’58; Coleman, Callan, Wess, Zumino ’69 
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 Effective Lagrangian for pions

Infinitesimal  SO(4)  rotation 
of a 4-vector                     :

where:
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Switch to a nonlinear realization: only 3 out of 4 components of the vector             are 

independent, i.e. 

⌥

(π, σ)

π
2 + σ

2 = F 2

π
θV�⇤ π

⇤ = π + θ
V ⇥ π ,

π
θA�⇤ π

⇤ = π + θ
A
⇧
F 2 � π2 ,

Example of an explicit construction:



Can be rewritten in terms of a  matrix:2 × 2

Chiral rotations: with 

nonlinear realization
U =

1

F
(σ 12⇥2 + iπ · τ ) U =

1

F

�⇧
F 2 � π2 12⇥2 + iπ · τ

⇥

L = exp[−i(θV − θ
A) · τ/2], R = exp[−i(θV + θ

A) · τ/2],

Chiral symmetry breaking terms

can be made χ-invariant by requiring ⇥LQCD = �q̄LMqR � q̄RM
†qL M ⇤ LMR†

 construct all possible χ-invariant terms involving       and freeze out       at the end ⇒ M M

⇥LSB =
BF 2

2
Tr[MU † + UM†] = 2BF 2mq � Bmq⌃⇤

2 + . . .LO term:

…
(terms with                                               can be eliminated via EOM/partial integration) 

derivatives act only on the next U

Derivative expansion for the effective Lagrangian

0 derivatives:                            — irrelevant      only derivative couplings of GBs ⟵

2 derivatives:

4 derivatives:

 Effective Lagrangian for pions

∈ SU(2)



The leading and subleading effective Lagrangians for pions

terms involving 
external fields

 

L(2)
π

=
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⇧⇧µU⇧

µU † + 2B(MU +MU †)⌃ ,

L(4)
π
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16
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16

⇧2BM(U � U †)⌃2 Gasser, Leutwyler ’84
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Low-energy constants of L
(2)
π

is related to the pion decay constant     : ⌅0|J i
Aµ
(0)|⇤j(⌃p )⇧ = ipµFπ�

ijF
(

ipµFπ

axial current from       :L
(2)
π

is       in the chiral limit:F
(
ipµFπ Fπ = F +O(mq) ⌅ 92.4 MeV

is related to the chiral quark condensate⇧2BM

L
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πTree-level multi-pion connected diagrams from 

U(π) = 12�2 + i
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insertions from   
suppressed by powers of 

remarkable predictive power! 

all diagrams scale as

Effective Lagrangian for pions



 Scattering amplitude

Scattering amplitude is obtained via an expansion in           .Q/Λχ

2. From the chiral Lagrangian to S-matrix

Power counting for GBs:

Chiral expansion breaks down for 

Λχ

Chiral expansion breaks down for 

An upper bound for       from pion loops:  Λχ Λχ ∼ 4⌅Fπ Manohar, Georgi ’84

But what is the value of      ?

angular integration in 
4 dimensions

dimensional 
argument



1-loop, all vertices from tree, 1 insertion from  

2-loops, all vertices from 1-loop, 1 insertion from tree,  1 insertion from  

2 insertions from 

Q2/

Q4/

Q6/:

:

:

from: Colangelo, 

    PoS KAON:038,08

 Pion scattering length in ChPT

S-wave ππ scattering length

[Weinberg ’66] 

[Gasser, Leutwyler ’83] 

[Bijnens et al. ’95] 

[Colangelo et al.]

LO:

NLO:

NNLO:

NNLO + disp. relations:

#  of  LECs  increasing…

Predictive power?



In the baryon sector, it is more convenient to work with     defined via                .  Then:=: u2 U =: u2, u

 Inclusion of nucleons

3. Inclusion of the nucleons: HB ChPT

The so-called compensator field K is a complicated SU(2)-valued function of θL, θR, U (and thus 

of space-time), K = K(L,R,U), except for isospin (i.e., vector) rotations with θL = θR = θV:

K(V, V, U) = V

u �! u0 =
p
RUL† =: RuK�1 ) K = (

p
RUL†)�1R

p
U

Notice: the transformation property of     can also be written as                                  .u �! u0 = KuL†=: u2

To construct the effective Lagrangian, one uses building blocks which transform covariantly 

with respect to SU(2)R x SU(2)L

N �! N 0 = KN, Oi �! O0

i
= KOiK

�1 = KOiK
†

to write terms like: N̄O1 . . . OnN Tr (On+1 . . . Om) . . . Tr (Om+1 . . . Ok)

Then, one defines the transformation properties of the nucleon fields via:  N �! N 0 = KN

The Coleman-Callan-Wess-Zumino (CCWZ) nonlinear realization of the chiral group:
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K(L,R,U)N

◆

[see, e.g., the book by 
Scherer and Schindler]



 Inclusion of nucleons

Covariant derivatives of the nucleon and pion fields:

DµN := (∂µ + Γµ)N, Γµ :=
1

2

�

u†
∂µu + u∂µu

†
�

uµ := iu† (∂µU)u†

Problem (?): new hard mass scale  m          power counting ??   

homework problem: verify  ,   Dμ → KDμ uμ → KuμK−1

divergence has to be 

absorbed by m from the 

LO Lagrangian… 

LπN = L
(1)
πN + L

(2)
πN + . . . L

(1)
πN = N̄

⇣

i�µDµ � m +
gA

2
�µ�5uµ

⌘

N,
o

gA = GA(0)where                         is axial charge of the nucleon



 Inclusion of nucleons
Making power counting manifest: The Heavy-Baryon approach 

Write the nucleon momentum as                            with              and pµ = mvµ + lµ v2 = 1 lµ ⌧ m

Split the nucleon fields into                                                           withNv = eimv·xP+
v
N, hv = eimv·xP�

v
N P±

v
:=

1 ± v/

2

Jenkins & Manohar ’91;  Bernard, Keiser, Meißner ’92;  Mannel, Roberts, Ryzak ’92

N̄(i@/ � m)N = . . . = N̄viv · @Nv � h̄v(iv · @ + 2m)hv + N̄vi@?hv + h̄vi@?Nv

For the free Dirac Lagrangian, one then obtains:

A? := A � (v · A)v

L
(1)
πN = N̄v (iv · D + gAS · u)Nv + O(m�1) whereN, Sµ ⌘ i�5�µνv

ν

 the small component      behaves as a heavy field and can be integrated out:⇒ )hv

HB propagator: S(p) =
i

v · p + i✏
S(x � y) =

Z

d4p

(2⇡)4
i

p0 + i✏
e�ip·(x�y) = ✓(x0 � y0)�

3(~x � ~y)⇒

In the HB formulation, the nucleon mass does not appear in the propagator and contributes 

only through 1/m corrections to vertices    power counting is manifest!⇒

Connected 1N diagrams scale as    with   QD D = 1 + 2L + ∑
i

ViΔi, Δi = − 2 +
ni

2
+ di

Or use covariant BChPT with PC enforced through renormalization conditions Becher, Leutwyler; Gegelia et al.
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low-energy constants
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Effective chiral Lagrangian:

L
(4)
πN

Pion-nucleon scattering amplitude for                                                      :n πa(q1) + N(p1) → πb(q2) + N(p2)
e pion isospin quantum numbers, tak

T ba
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calculated within the chiral expansion

Pion-nucleon scattering
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Pion-nucleon scattering up to Q4 in heavy-baryon ChPT

Order Q4:

Order Q3:

Order Q2:

Order Q:

ci

ci di

di ei
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Q3 Q4
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Fettes, Meißner ’00;  Krebs, Gasparyan, EE ’12



 Limitations of the HB approach

Consider the scalar form factor of the nucleon.  Using 

relativistic nucleon propagators  (i.e., no 1/m-expansi-

on) and ignoring the vertex structure, the amplitude is:

J = i∫
d4l

(2π)4

1

[l2 − M2 + iϵ][(l + q)2 − M2 + iϵ][(p − l)2 − m2 + iϵ]

For on-shell nucleons (  ), we have  with . p2 = (p + q)2 = m2 J = J(t) t = q2

4. Beyond the HB approach

Instead of calculating  (tedious…), one can compute  using Cutkosky cutting rules 

(i.e., replace the cut propagators by the δ-functions enforcing the on-shell relation,  see,  e.g.,  

Schröder & Peskin)

J(t) Im[J(t)]

t ≥ (m + M )2t ≥ (m + M )2t ≥ 4M2

The amplitude develops an imaginary part when two intermediate particles can become on-

shell:



 Limitations of the HB approach

For  (1st graph):t ≥ 4M2 Im[J(t)] =
1

8π

1
p

t(4m2
− t)

arctan



p

(t− 4M2)(4m2
− t)
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�

We now perform the -expansion of this result for :1/m t = 1(M2) ≡ 1(Q2)

p

(t� 4M2)(4m2 � t)
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⇠ O
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3x3
+ . . .⇒

converges for x > 1

This expansion (+ pre-factor) is the HB expansion: Im[J(t)]
HB
=

1

8π

1

2m
p
t

π

2
+O(m0)

p

Problem: it breaks down in the vicinity of :   t ≈ 4M2 x < 1 ⇒ 4M2 ≤ t ≲ 4M2(1 +
M2

m2 )
Solution 1: Infrared Regularization Becher, Leutwyler ’99

i
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p2 �m2 + i✏
= i
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2mv · l + l2 + i✏
= i
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vertex from ℒ(2)

πN

use: p = mv + l



…

 Limitations of the HB approach

The IR approach:  expand the 

integrand in 1/m, compute the 

integrals using DR  (power co-

unting manifest) and resum all 

contributions… Schindler et al.’03

At the 1-loop level can also be realized by selecting out the infrared singular parts of the 

integrals. Becher, Leutwyler ’99

Disadvantage: violates the analytic structure of the amplitude (for hard momenta).  

Solution 2: The Extended On-Mass-Shell (EOMS) Renormalization scheme   

                 Gegelia, Japaridze ’99;  Fuchs et al. ’03

Main idea: work in the manifestly covariant approach and restore chiral power counting by  

                 using appropriate renormalization conditions  (i.e., perform additional finite subt- 

                 ractions of PC violating terms involving positive powers of the nucleon mass)

This is nowadays the standard approach for baryon ChPT…



 Summary Part II

— ChPT =  low-energy EFT of QCD

— For GB and 1N processes, the amplitude is calculable perturbatively via an 

     expansion in powers of  (thanks to the spontaneously broken 

     chiral symmetry)

| ⃗p | ∼ Mπ ≡ Q

Part II: Chiral Perturbation Theory

For an introduction see EE, Nuclear Forces from Chiral Effective Field Theory: A Primer, e-Print: 1001.3229

— In the 1N sector, additional efforts are needed to maintain the power counting:  

     HB ChPT or covariant BChPT (using IR or EOMS)

Notice: Interactions between two nucleons are not suppressed at low-energy  

            and must be re-summed non-perturbatively  

                                -less EFT ( )  or  EFT ( )⇒ π p ≪ Mπ χ p ∼ Mπ


