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Review of Continuum QCD:   
● Fermion action (for a single flavor):

● Gauge action:

● Euclidean path integral: 



  

The running coupling: asymptotic freedom
● Interaction strength is scale (and scheme) dependent 

● Rate of change given by the beta-function:             



  

Lattice QCD: a bridge between low and high energies
● Discretization
● Simulation Algorithms
● ‘Measurements’

Setup:
● Regular square lattice:

● Boundary conditions must be specified. Usually ‘periodic’. 



  

General Considerations: 
● Simulation parameters/outputs are dimensionless:

● Scale-setting required for dimensionful predictions:

 
● State-of-the-art for lattice dimensions:  

● UV and IR physics controlled (in principle):
● Finite-volume effects (single-hadron) at percent level for 

● Leading cutoff effects typically quadratic: 



  

Lattice discretization of SU(3) gauge theory:
● Gluons: lattice links (parallel transporter) 

contiunuum: 

 

      lattice:

 

● ‘Loops’ are gauge invariant, e.g. the ‘plaquette’: 



  

● Wilson gauge action:

● Gauge invariance exactly preserved by the lattice regulator!

 
● No gauge fixing required   

K. G. Wilson, Phys. Rev. D 10, 2445 (1974)

     



  

Lattice Discretization of Fermions:

 

Naive fermion action:   



  

Fourier Transform: (Ex.)

Massless propagator:

Remarks: 
●  In continuum, pole at
● At finite a, 15 additional poles (‘doublers’) at

● Action must be modified to deal with the doublers!    



  

Theorem (Nielsen+Ninomiya): you can’t have all of the following

●          is continuous (periodic) in the Brillouin zone. 

(Equivalently,                  is local) 

●           has the correct continuum limit.

●            is free from doublers.

● Continuum chiral symmetry a finite lattice spacing   

   



  

Naive Fermions: 

●          is continuous (periodic) in the Brillouin zone. 

(Equivalently,                  is local) 

●           has the correct continuum limit.

●            is free from doublers.

● Continuum chiral symmetry  

   



  

Wilson Fermions: 

●           is continuous (periodic) in the Brillouin zone. 

(Equivalently,                  is local) 

●           has the correct continuum limit.

●            is free from doublers.

● Continuum chiral symmetry  

   

K. G. Wilson, Phys. Rev. D 10, 2445 (1974)

     



  

Wilson Fermions: 

● Add an additional term to naive Dirac operator:

● Explicitly breaks chiral symmetry (in addition to the quark masses) 

● Doublers now have mass (see exercises)

where     is the number of nonzero components     



  

Wilson Fermions: 

● Bad news:
● Wilson term introduces O(a) cutoff effects 
● Wilson term explicitly breaks chiral symmetry

● Good news: 
● No doublers! 
● Dirac operator has concise form. Relatively cheap numerically. 



  

Other Fermion Discretizations: 
● Staggered Fermions:

● Partition Dirac spinors across neighboring sites 
● Very cheap numerically 
● Four doublers (‘tastes’) are still present. 
● Fourth root  non-local action →

●  Domain-wall fermions
● Introduce a fifth dimension. Chiral fermions bound to the 4-d 

‘domain walls’.  
● A remnant of chiral symmetry as 
● Very expensive numerically



  

Other Fermion Discretizations: 
● Twisted-mass fermions:

● Doublet of Wilson fermions. Mass term has non-trivial isospin 
structure.

● Good numerical properties.
● ‘Automatically’ O(a)-improved 
● Discrete symmetries don’t have usual form  



  

The Symanzik Improvement Program: 

●  Describe discretization effects by a continuum EFT

● Breakdown scale:

● Cutoff effects encoded by additional terms in the action:

● Idea: add terms to lattice action to cancel additional terms  



  

Example: removing O(a) cutoff effects from Wilson action

● There are 4 operators at dimension 5

● After parameter redefinitions and field eq.’s, only                  remains 
(see exercises)  

See R. Sommer, hep-lat/9705026

     



  

Wilson fermions  ‘clover’ fermions →

● Define a new Dirac operator: 

where                    is the sum of all plaquettes in the         -plane

● Now all ‘spectral’ quantities (i.e. masses and energies) are O(a)-
improved

   

    B. Sheikholeslami, R. Wohlert, Nucl.Phys.B 259 (1985) 572

     



  

Improvement of composite operators:   

● Higher-dimensional counter-terms required to improve correlation 
functions of composite operators.

● Ex: the axial current

● Possible counterterms:       



  

Determining improvement coefficients: 
● General strategy: impose some continuum property at finite lattice 

spacing

● Typically: chiral Ward identities 

● Best if improvement/renormalization coefficients determined non-
perturbatively

● To do a simulation with Wilson Clover fermions, need to tune:

● Other renormalization/improvement coefficients should also be 
non-perturbative.             



  

● Using equations of motion and redefinition of renormalization 
constant, only one operator required:

● Renormalization also required for full O(a)-improvement:

● More complicated for u,d,s quarks. Ex: coupling improvement         



  

A word of warning about cutoff effects:

 
● Symanzik expansion is an asymptotic series
●               could contain large logarithmic corrections. 
● Ex: the 2-d non-linear sigma model should have leading  

● Data described well by perturbative computation of log corrections             

Plot from: J. Balog, F. Niedermayer, P. Weisz, Nucl.Phys.B 824 (2010) 563-615

     



  

Cutoff effects are important: 
● Ex: H-dibaryon binding energy

            

● Perturbative computation of log-corrections in SymEFT:

J. R. Green, et al., Phys.Rev.Lett. 127 (2021) 24, 242003

     

N. Husung, P. Marquard, R. Sommer,     Eur.Phys.J.C 80 (2020) 3, 200 

     



  

Lattice QCD simulation: 
● Integrate out the fermions:

● Determinant is a non-local function of U 
● PDF must be positive-definite in order to Monte Carlo sample
● If                       , can exploit      -hermiticity to show               



  

Lattice QCD simulation: 
● ‘Bosonize’ the light quark determinant via ‘pseudofermions’

● Introduce a rational approximation for the strange quark:

where                                 and 

● Any negative signs treated with ‘reweighting’                 

M. A. Clark, A. D. Kennedy,  Nucl.Phys.B Proc.Suppl. 129 (2004) 850



  

Markov chain Monte Carlo: 
● Construct a Markov Chain with limiting distribution:

● Metropolis algorithm: 
● Propose a change (symmetrically) :
● Accept change with probability:

● For pure gauge, local proposal is sufficient
● With fermions a global proposal is required    



  

Markov chain Monte Carlo: 
● ‘Thermalization’ is required: run for a while to lose ‘memory’ of 

starting configuration 

●  Save gauge configuration every             updates

● Errors estimated using the Central Limit Theorem, but with modified 
variance:   

where              is the autocorrelation 



  

Hybrid Monte Carlo (HMC): a global update with a reasonable 
acceptance

● Introduce ‘momentum’ fields

 
● Evolve                      according to Hamilton’s equations:

● Metropolis accept/reject with ‘Hamiltonian’        

S. Duane, A. D. Kennedy, B. J. Pendleton, D. Roweth, Phys.Lett.B 195 (1987) 216



  

Hybrid Monte Carlo (HMC): a global update with a reasonable 
acceptance

● Integration performed over trajectory of length

● Interval broken into             integration steps

● Interplay between autocorrelation, and

● Generally: largest cost fraction comes from solving Dirac equation:

● You can run a lattice QCD simulation! See Exercises (pure gauge)          
  



  

History: breaking down the ‘Berlin Wall’
● HMC preconditioners make forces smaller,

exploit hierarchies    
Panel discussion at Lattice ‘01
Plot from: CP-PACS coll., Phys.Rev.D79:034503,2009

     



  

History: breaking down the ‘Berlin Wall’
● Improved algorithms for solving the Dirac 

equation:    
Plot from: M. Lüscher, JHEP0707:081,2007

     



  

Simulation: summary
● 2+1 flavor simulations are possible down to the physical point for 

several discretizations

● Isospin-breaking effects are beginning to be added:
●

● QED    

● How should HMC autocorrelations scale? 
● Random walk:
● Free field:   



  

Global Topology Freezing:       

Plot from: S. Schaefer, R. Sommer, F. Virotta, Nucl. Phys. B845 93 (2011) 
arXiv:1009.5228

     



  

Global Topology Freezing:       

Plot from: S. Schaefer, R. Sommer, F. Virotta, Nucl. Phys. B845 93 (2011) 
arXiv:1009.5228

     



  

Global Topology Freezing: explanation

● The space of gauge field configurations is not simply connected. 

● As the continuum limit is approached, disconnected instanton 
sectors emerge, with fixed ‘winding number’ 

● Global topological charge: 

● Made renormalized by applying the Wilson flow

M. Lüscher + S. Schaefer, JHEP 04 (2011) 104

     

M. Lüscher, JHEP 08 (2010) 071

     



  

Global Topology Freezing: topological solution 

● Change to open temporal boundary conditions: field space becomes 
simply connected.

● Langevin scaling achieved 

M. Lüscher + S. Schaefer, JHEP 04 (2011) 104

     



  

Global Topology Freezing: masterfield solution 

 
● Simulate a very large lattice at fixed global topology 

● Accumulate statistics from separated space-time regions 
➔O(1000) gauge configs = 6^4 space time regions of size

Top. susceptibility comparison:

(only T-direction is large)

M. Lüscher, EPJ Web Conf. 175 (2018) 01002

     

M. Bruno et al, PoS LATTICE2022 (2023) 368 

     



  

  Observables from lattice QCD: Euclidean correlation functions 

● Large time separation: ground state saturation (Analogy: SHO) 

● Low-lying states from large-time limit:                                    

● Signal-to-noise problem → ‘Teufelspakt’                                                          

                                                                                  → 

Plot courtesy of C. W. Andersen, apologies to J. W. von Goethe     



  

  The Signal-to-noise Problem: 

●   The variance is also a correlation function. Spectrum can be analyzed.

● The signal to noise ratio:

●  A general problem in lattice QCD. Exponentially bad.

● More examples in the exercises                                                              

                                                                                  



  

  Computing Correlation functions: 

●   Wick’s theorem (for a fixed gauge field):                                                   
    

                                                                 

● Recall: computations of inverse are computationally costly

● Better if only ‘point-to-all’ propagators are required: 
   (12 Dirac equation solves)

● The full ‘all-to-all’ propagator is costly:                     



  

  Valence quark-line diagrams: examples

● Single meson:

● Single baryon:                       

Diagrams from C. Morningstar et al., Phys.Rev.D 83 (2011) 114505



  

  Valence quark-line diagrams: examples

● Meson-to-two-meson:

● Two-meson: 

                       

Diagrams from C. Morningstar et al., Phys.Rev.D 83 (2011) 114505



  

  Conclusions:

● Lattice QCD enables non-perturbative computation of low-energy QCD 
 

● Subtleties of lattice regularization:
● Chiral symmetry/Fermion doubling
● O(a) improvement 

● Algorithms and computing power have improved. Simulations at the physical quark 
masses (with controlled errors) are possible. 

● Some correlation functions are difficult to compute! Signal-to-noise problems are 
everywhere, especially bad for baryons.

                                        THANKS!  
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