Lattice QCD: Finite-volume spectrum
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Spectroscopy in lattice QCD

Extracting resonances from 2-body data 101

Assume we have scattering data for well-defined angular momentum

Assume the resonance is narrow and isolated
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Spectroscopy in lattice QCD

Extracting resonances from 2-body data 101

Assume we have scattering data for well-defined angular momentum

Assume the resonance is narrow and isolated
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Pole at \/_p ~ (mgy —11'/2)

More general form for the amplitude
t,(s) = , = — "¢ (8) gin §1(s)
e p(s) 1 —ip(s)K(s)  p(s) :

Elastic case

In lattice QCD, our basic equation is the Lagrangian Lqcp = Z vﬁf (2D — my) Yy

Quark masses are a parameter for us — m_1is a “choice” f

Our basic observables are correlation functions

(01(101(0)) = ;- | Dl@le~**I"0,[8[0][®

How do we go from here to there??



Lattice QCD: Continuation

= Discretized lagrangian/hamiltonian formulations
M Importance sampling and algorithms
= Correlators

L Intro to 2-pt correlation building and fitting

N Finite-volume symmetry

L1 Generalized eigenvalue problem



Lattice QCD: Continuation

O—>—0
Regulator
<S0f —iH (t;— /Dgp e~ 5lp(z)] : 2 4 | \

Discretization

O quark A gluon

Sum over all paths
/Dsa(fﬁ) =11 / dipy

Advantages Major obstacles

1. Systematic approach 1. Highly dimensional integral 10° — 103

2. Quark mass is a parameter 2. Highly oscillatory 6_7;3 [80 (x)]



Lattice QCD: Continuation

Y

—ZH(tf

Regulat
/ Dgp —zS o(2) egulator +

o

\ /

Q
——Pp—@—
—>—9-

Y

Discretization

O quark A gluon

Sum over all paths
/Dsa(l‘) =11 / dipy

EFuclidean action t— —it

—iS = —j / d>rdif — / dPxdtLy = — Sk



Lattice QCD: Continuation
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Quark Propagator

Quark propagator
(0[y3y7| 0) = / DYDPDU 4P e SelédnU
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Quark Propagator

Quark propagator
(O|vie@P|0) = [ DyDFDUYIR g Sslvbv

Splitting the fermions

— /DUQ—SE[U] /pwpnga%%—www
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Quark Propagator

Quark propagator
(0[y3y7| 0) = / DYDPDU 4P e SelédnU

Splitting the fermions
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Probability
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Quark Propagator

Quark propagator

(0[y3y7| 0) = / DYDPDU 4P e SelédnU

Splitting the fermions

— /DUQ—SE[U] /prqzw;a&iﬁe—wl?w]w

Algebra

- [ou (o)

Sampling according to this

N

Z za,JB
Our quark propagator, one per configuration
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Wick contractions

Lets study the temporal evolution of a pion at at fixed position in the lattice

7~ J
7.‘.-|- ‘ C' ()

7)) =|d
Where

(010 (t) 0T(0)|0)

— |d’Y5u>

Are P and C correct?
Afternoon...
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Wick contractions

Lets study the temporal evolution of a pion at at fixed position in the lattice

/\ <

7)) = |dysu)

d C (t) ={0]O(t) O'(0)|0)

(O (2)OL 1 (0)) = (d(@)y5u(z)a(0)y5d(0)) = 75752 (d(z)aru(@) s, u(0)azd(0)s,)

C1

C2

N
— __fygkhgl,y§UH82<QL(aixgliZ(Cnh12>QL<Ci(CnM226i(ai%gf)hi — __.:E::,ygkhglﬂy

222D (2] 0)g10. Dy (0] ) gya

Ci1C2 C2Cq

At =1

— Z tr[v5 (Du[Un] ™) z.075(Da[Un] ™ )o.2]

w

15



Wick contractions

State JEC T Particles

Pseudoscalar 07  ~5,v4vs wo,7w,n, K-, KV, ...

More general constructions are possible Sealar 0+t 1,4, fo, a0, K&, ...
Vector 1I™7 vy p 00w, K0,
O (x) = YU (2) T2 () Axial vector 17T ;75 ai, fi,...
Tensor 177 vy hi,bq,...

[' can take many different forms to produce desired quantum numbers

One way of creating more general operators is to also include covariant derivatives

( ) ¢(f1 ( ) (Dﬂ ; Dzz S eees D?&V)w(h) (:I?) n is the order, and i the direction

\1
" 2a

Dito(a) = o= (Uia)b(a +i) = Ul (w — i)l — i)

On a discrete lattice they are finite displacements of quark fields, connected by links

In our last step, we sum over position space to create operator of well-defined momenta

ooy L = 1\ —iTD . =
O(p,t) = T > O(, t)e > %:O(a: t

rEAN3



Wick contractions

Lets study the temporal evolution of an eta at at fixed position in the lattice

U aysu) + |dsd) C(t) = (0|0 (t) 0'(0)]0)
) = 7
(On()0},(0)) == (% tr [ys Dy, (2 | 0)95 D, (0 | z)] + %tf V5D, (x| )] tr [y5D, (0] 0)]

b3t sDy 0] e 15050 0)] ) +u 0 d

Disconnected pieces

At

|
.

Disconnected pieces are typically noisier
They share the same initial and final time .b

One trick is to compute them on all time-slices and
average (translational invariance)
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Point-to-all vs all-to-all

This i1s a common result when dealing with iso-singlet
operators

The situation is similar when studying two-pion states

For I=2 scattering, only connected pieces contribute to the
contractions

07[;2 = dysudrysu

However, I=0 also contains extra disconnected pieces

1 _ _
O~ = 5 (ul'u — dld)(ul'u — dI'd)
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Smearing

We are studying low-energy objects — relatively large distances
Our hadrons are of the order of 6(1) fm

But our operators are based on a local-type construction??
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Smearing

We are studying low-energy objects — relatively large distances

Our hadrons are of the order of ©(1) fm

But our operators are based on a local-type construction??

We will optimize the coupling of our operators to the physics of
interest by smearing our constructions

(T, t) = ZF(f,fg’» U(t))(a, t)

Respect Gauge invariance

We will focus here on Gaussian smearing types

JHEP 09 (2013) 014
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Smearing

On top of Gauge invariance, we want our operation to have translational, rotational, parity
and charge conjugation invariance

— ZF(f,Q?,U(t))w(a?,t)

Turns out the Laplacian operator fulfills these requirements
3
V2(Z,7:t) = —607 7+ Z (U@ 1)1 5+ ULE 0054 ;)

A prototypical smearing operator is the "exponentiated”, discretized version of the

laplacian on the lattice
2 No
Ty (1) = (1 | oV (t)>

Where

(t) = lim Jyn, (t) =exp (aV?(t))

N g —> 00

Can we ask for anything else??
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Smearing

The exponential takes care of the shape of our smeared operator, approximating a gaussian-type
line shape of the wave function, centered around x, the profile also depends on the s parameter

(1) = lim Jy,, (1) =exp (cV?(t))

N g —> 00

Remember that we can represent the operator by its eigenstate decomposition

(®) = Y liAdi

Decomposition in space of coloured scalar fields on a time-slice N, x N.

1

0.8

0.6 <<
<

04

0.2
0 | | ' | ' | | | ' | | |_Total # eigenvectors

0 2000 4000 6000 8000 10000 12000

Data from 4, ~ 0.12 fm 16°lattice Eigenvector index, |



Smearing: Distillation

Phys.Rev.D 80 (2009)

We truncate the eigenvector decomposition to a VERY low number

(t) = Z 1) A (1]

Where Np < < N, X N,

<

1

0.1
0.01
0.001

It approximates to a good extent the previous smearing algorithm

(t) =V()V(t)

(N, X N,) X Np,

Np is now a free parameter we use to produce a sensible

linehsape for thewave function

As N, approaches the total number of eigenvectors, the

profile approaches a delta

Why??
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Smearing: Distillation

Phys.Rev.D 80 (2009)

Now, we define our operators in the following way

O (t) = UV (1)) (1)

t]b(t)

Our correlation functions are defined accordingly

(O(t) Z tr (¢

Where

b(t) = V)TV (t)

Elemental

t)7u(t,0)0(0)71, (0, )] (Un)

i (¢, 1)

Now, our correlation functions are much cheaper

4x3XLPxT —=4x NpxT

985304

~ 100 — 300

= VI(t)D;

Perambulator

)V ()
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Smearing: Distillation

Compare PP (non-smeared) with all the other smearing

procedures

Increasing N, introduces more ultraviolet effects, but

Increases the precision around the plateau

Setting Ny, is a balancing game

As discussed, Wick contractions for I=0 =~ scattering
include disconnected pieces, which we compute in full

using distillation

(a) (b) (¢) (d)

- :
Z o pt-al PP
028 fy o pt-al S5
T o F e : . N-16
- 026- v Ne24
1O i o : o N=32
|| 024- o ) A48
-~ [ 3 ) 3 o N=64
8022: ﬁ Z ) §
Ej:: i hd o
D, 02__ §§ ¥ s o §
S §§ ¥ @ ° o g §
- 0.18F 55, % 5 L% %o, :
- §§! 2 52 3 3 &
LRI R RY }? }F % % [
016 §§ﬁ§§§%§%;%%FFH
| | L | L L L | 1 L
0 5 10 15 20 t/CLt
et C(t,0)
0016F o
ootz eI I I 0
0.008 |
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g oo 8 o2 §§§§§§§§§§ (d)
O§§§§§§§§§§§§§§§§§388838553833333333§ii&§w%@
ppppppppppp pnnnnnnnnnnnnnnnng§§§§§§§§§§§gcg
C
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Questions?
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Pions on the lattice

Lets study the temporal evolution of a single particle

C (t) = (0|0 (t)0T(0)|0)

Basis

—Z t) [n)(n|O'(0)|0)
\, e—thM/h

At
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Pions on the lattice

Lets study the temporal evolution of a single particle

C (t) = (0|0 (t)0T(0)|0)

Basis

= Z t) [n)(n|O(0)]0)
\’ e—thM/FL
Euclidean time

= E A, e~ Ent
mn

At
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Pions on the lattice

Lets study the temporal evolution of a single particle

C (t) = (0|0 (t)0T(0)|0)

=20

Euclidean time

Basis

(t) [n)(n|O7(0)] 0)

\’ e_ZHtM/h 0.8...

At

|
.

C(t)

_ Multiple exponentials

0.6
0.4 :
L $ $ s
~ Single exponential ‘e,
0.2+ ° .
. ¢ e
““““““““““““““““““““ t
5 10 15 20 25 30
7.............................: TOmOI/‘I/'OW

— E Ane_E”t &
n Afternoon... U
We determine these energies from fitting the ™
temporal evolution of the system f
0.080
o)
Mer — (O 0751
° I Ct+1)
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Signal-to-noise ratio

For a correlator, the sighal decreases exponentially The error decreases at best (only for =), at same speed
This one looks incredibly precise In any practical calculation, the data becomes noisy, pretty early
c(t) 0.35 C(t)
0.30 - 10-1
0.25 - 1074
103 -
0.20 A .
0.15 - 10~ 1
| 102 - T L ‘ ‘
0.10 - N\ ®
10-° \
0.05 | \
1077 3 AN
0.00 - -0 00 —0—0—0—0—0 e \
2 4 & & B b 2 = 0 N\
ta 2 4 6 8 10 12 14 16

t/a;

We define the signal-to-noise value by using simple averages and variances

(o)
v/ Var(O)

If StN is lower than 1, then the error is greater than the value, we lost all signal

StN(O)



Signal-to-noise ratio

Remember that for us, the observables are correlation functions

(0) = (0()0"(0)) Var(0) = (|OF) — (0)°

By definition
\O|2 = 00~

For mesons, the signal decreases with the ground state mass

(0) ~ et

The variance, |O|° = OO* can contain operators that couple to two
pions
Why??

(OP) ~ e=2mt

All in all, for mesons the ratio decreases like
StN(O) ~ exp [— (mpr — my) t]
For baryons, the situation is only slightly different
StN(O) ~ exp |— (mp — (3/2)m) t]

ct) 0.35

0.30 -

0.25 -

0.20 -

0.15 A

0.10 A

0.05 A

0.00 A

C(t)

10-1é
10-2é
10-3é
10-4é
10-5é
10-6é
10-7é

1075 5

00000 —0—0—90

e 6 8
t/a;

10

12

14

16
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2-pt correlation fitting

How would we naively fit the correlation function?

X2 _ Z (C (ti)A;{tE)a*,ti)) f(a*,t) _ zn:A’n exp(—Ent)

1

However, in this case, all our values at different times come from
the same Montecarlo samples

Think about samples U, as the main variable now

If our the distance between two times is small (small spacing «)
then the value of the correlation function must be similar

C(t1)(Un) ~ C(t2)(Un)

Data IS correlated
Zij — COU(ti,t]‘) # 0

We therefore modify our penalty function to account for this

xP =) (Cti) — fa", t))25' (C(ty) — f(a*, 1))

2,]
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C(t)

2-pt correlation fitting dore 21
1.2 7 Ap=1.972£0.000
How would we naively fit the correlation function? 1.0 -
o 0.8 -
C'(t;) — f (a*,t;
X2 — Z ( Z) f( ’L) f(a*, -L-) — ZAn exp(—Ent) 0.6 -
. AC(t;)
t n 0.4
However, in this case, all our values at different times come from 0.2 -
the same Montecarlo samples .
Think about samples U, as the main variable now ; * ° 8t/at 12 19 1

If our the distance between two times is small (small spacing «)
then the value of the correlation function must be similar

C(t1)(Un) ~ C(t2)(Un)

Data IS correlated
Zij — COU(ti,t]‘) # 0

We therefore modify our penalty function to account for this

xP =) (Cti) — fa", t))25' (C(ty) — f(a*, 1))

2,]



2-pt correlation fitting

How would we naively fit the correlation function?

X2 _ Z <C (ti)A;{tE)a*,ti)> f(a*,t) _ zn:A’n exp(—Ent)

1

However, in this case, all our values at different times come from
the same Montecarlo samples

Think about samples U, as the main variable now

If our the distance between two times is small (small spacing «)
then the value of the correlation function must be similar

C(t1)(Un) ~ C(t2)(Un)

Data IS correlated
Zij — COU(ti,t]‘) # 0

We therefore modify our penalty function to account for this

xP =) (Cti) — fa", t))25' (C(ty) — f(a*, 1))

t,J

C(t)

C(t)

1.4

1.2 A

1.0 A

0.8 ~

0.6 -

1.4 A

1.2 A

1.0 A

0.8 -

0.6 -

0.4 -

0.2 -

0.0 +

A0=

x%/Indof=2.1

1.972 +£0.000

t/at

12

14 16

A0=

x%/ndof=15.9

1.974 £0.000

t/a:

12

14 16
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2-pt correlation fitting: Statistics

How do we estimate errors and correlations of observables

Remember our inputs are discretized sampled numbers (they come without errors)

Average <C(t)> — %Z C(t)i Error of the average A<C(t)> — <C(t)2> _ <C(t)>2

Covariance ~ Cov(t;,t;) = N(]Vl— 1) z_: (C(ti)n — (C(1:))) (C(tj)n — (C(25)))

How do we estimate unbiased error propagation?

Function f Parameters a* Aa”

Central value f (a*)

Errors (correlated) Af(a*)Q _ Z 6{)(8‘*) COUZ-]' 8](;(3-*)
a; aj

Parameter fit covariance

]
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2-pt correlation fitting: Jackknife

How do we estimate unbiased error propagation?

Central value f (a*)

Errors (correlated) Af(a*)Q — Z of(a”) Cov-

]

How to do this based on our samples? — Jackknife

N
— 1
Jackknife samples from raw samples C (t)n — N 1 Z
N
Average is preserved <C(t)> _ % Z C/(?)z _
1=1

Covariance of averages from Jackknife

COU(ti, t]) — Zij

Of(a)

1
8&@ / (9CLj
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2-pt correlation fitting: Jackknife

How to do this based on our samples? — Jackknife

Returning to raw samples

How does it work?

N

Start with a collection of raw parameters and produce the Jackknife samples (a*)z- — a*,

Obtain the Jackknife sample for the function f (a*)n = f (a*n>

Bestfir — f(a") = <ﬂa\)n>

Errors Af(a*)2 = N]\_f ! Z(ﬁa?)n — f(a*))Q

n

Do not confuse this sampling procedure with experimental data resampling

The procedures are not the same Experimental data resampling propagates bias
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2-pt correlation fitting: Jackknife

Why does it work so well?

a, ~a+ Aa/VN

Note that (single parameter)

— 2

f(a), — f(a)? ~ f'(a)Aa/VN

In which case

N —1 —

Af(a)° = == (f(a), — f(2))> ~ |/ (a)]” Aa®

n

2600 —
2550
The Jackknife samples accumulate around
the central value of the sample 2500
IMI T
1- Get Jackknife samples from raw data 2450
2400
2- Perform full analysis based on these samples
2350
2300

| I L I L I L I |
Blocked data, 200 blocks
- . & _
.
L1 1 I L1 1 1 I L1 1 1 I L1 1 1 I L1 1 1 I L1 1 1
30 -20 -10 0 10 20 30
E - <E>

1 2459.5-

1 ™Ml

1 24585

2460

2459 —

| | | | I | | | | | | I | | | |
Jackknife blocked data, 200 blocks

2458

0.2

-0.1

E - <E>

0.1

0.2
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2-pt correlation fitting: Jackknife

What if I have to perform fits to these samples?

Our penalty function varies 5{\% _ Z (C/(E)n _ 7 (a,.(7 tz)) Ez'_jl ((@n — f (3*7 tj))

1,] —
We “freeze” the covariance to the one
of the full sample. It reduces the bias

These sample penalty functions relate to the full penalty function as

. d—k
Jackknife ZX%: (N —1) | X2

Original ZX% = (N —1)(d—k) +

So, what about the parameter values and errors

On a single fit to data, the minimizer provides central values AND errors X2 — a*

When using resampling methods, we forget about the errors from the minimizer 55% — a*,

N

. . . * ]_ —

Central value is obtained as the mean of the Jackknifes <a > — N E a*,
1=1

Covariances are obtained from the master formula

Cov(a*(i),a*(j)) = N]\—[ : i (a/*\(i)n — <a*(7j)>> (

n=1

X2

a*(j), — (a*(j))

)

40



2-pt correlation fitting: Bootstrap

This time, we do resampling with repetition, where K Is not necessarily N

K

Z C(t)i This values are taken randomly from the sample, repetition is allowed

3
=| =

The errors are similar to the raw sample case
1 L _—
Sy = 37 2 (C(t),, = (C (1)) (C (), — (C (1))

, : : 2 2
The variance over the bootstrap is the variance of the mean value i = O =0 can

The bootstrap allows for calculations of confidence intervals (these are biased estimators)

41



Questions? — Some water?

Next: Finite-volume symmetry!

42



Finite-volume symmetry: Cubic vs Spherical

Our universe is spherical, we have continuous, scalar rotational invariance

Our lattices are boxes in L’, we cannot leave the box invariant with any type of rotation

A\

0(3)

We are “losing” symmetries when moving from one to the other

What is being affected?

43



Finite-volume symmetry: Cubic vs Spherical

How do we classify particles in QM?

J¥ correspond to irreducible representations of the group 0(3)

J is the generator of rotations

the projection of angular momentun onto some axis, /. labels rows of the representation

Single particle states are classified by their irreptsinthe RIHL  |p,m) ® |j, u) = |m, j; p, 1)

Two-particles states are typically described in either helicity or LS basis

Helicity basis | J M5 py ;)

LS basis ‘JM;LS;W> — Z <LSMLMS ‘ JM> <8132m1m2 | SMS> |LML§m1m2§7>
| Helicity basis

0(3)

A\

44



Finite-volume symmetry: Cubic vs Spherical

On a typical lattice, the group of rotational symmetry is
the cubic point group O,

Therefore, the states of our hamiltonian will be Oy,
described by its irreducible representations

For consistency, we describe these irreps as A, where P is the same parity operation as in
the continuum

The operators/interpolators we build must respect these same symmetries

States with different J, in the continuum appear in different irreps on the lattice

45



Finite-volume symmetry: Groups

A group G must fulfill the following properties:

If g, & belong to G, then g,8, belongs too

The identity belongs to G

Every element must have an inverse

If 2.9, = 2,2/ Vg, g, € G, then the group is called Abelian

Our discrete groups, however, will not be abelian

a d-dimensional representation I" of a group: a set of

d x d matrices each acting on g, € G such that
['(g18,) = 1'(g)1(g)

A set of matrices that respect the same operations
as the group is a representation of it

If we can block diagonalize all matrices with the
same transformation, then we can reduce the group
representation

(1)
I'(g) = ( s O(g) F(z())( ) ) =TW(g) & T'?(g)

46



Finite-volume symmetry

Symmetry operations on the octahedral group O

04 02 CS
Operation No. Class Label
identity 1 1

90° about axes through centres of opposite faces 6 CYy

180° about the same axes 3 C*%

120° about diagonals connecting opposite vertices 8 C's

180° about axes through centers of opposite edges 6 C
24
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Finite-volume symmetry: In-flight lattices

0, is the symmetry group of a lattice at rest, only

Lattice in flight (momenta # 0) have different reduced symmetry groups (subgroups of 0,)

nOO Onn nnn

4v 3v

Op
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Finite-volume symmetry: Properties

Vectors of matrices from different irreps L
are orthogonal Now, the character of representation is

Zri(g)mnrj(g)mn — 6ij X(g) — Tr(F(g)) vg - G

Vectors from same irrep but different matrix
elements are also orthogonal For an irrep, the characters of all matrices
belonging to the same class are identical

Z Pz (g)mnrj (g)m’n’ — 5mm’5nn’
g

Vectors from the same rep and same matrix In a group, number of irreps = number of classes
elements have magnitude ///.

Zpi ()L () mn = h/L; Properties:
g
2
where / is the order of the group and |, Z Xi(9)]"=h Z Xi(9)X;(9) = hdi;
the dimension of ', g g

49



Finite-volume symmetry

Remember, number of irreps = number of classes, there are 5
irreps for O > Ay, As, BT, T

Schur lemma |G| = Zdim (Fi)2 . 24 —
i 1

Ay

E T

1
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Finite-volume symmetry

Remember, number of irreps = number of classes, there are 5
irreps for O > Ay, As, BT, T

Schur: G| = Zdim (T;)° v 24 =124+ 124924324 32
7’ Ay Ay E T T
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Finite-volume symmetry

Remember, number of irreps = number of classes, there are 5
irreps for O > Ay, As, BT, T

Schur: G| = Zdim (T;)° v 24 =124+ 124924324 32
7’ Al Ay E T T

The cubic point group O, also includes spatial inversions

XL — X
Oh :O®{]—713} ]-S Y — —Y
< —Z

This increases the number of classes and dimensionality to 48

48 = 17 + 17 + 12 + 17 + 2% + 2% + 3% + 3% + 3% + 3°
Alg Alu AZg AQu Eg Eu Tlg Tlu T2g T2u
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Finite-volume symmetry

We tabulate the irreps by class on a character table

O 1 80; 60y 6C5 3(Cy)°

A +1 +1 41 +1 +1
A, +1 +1 -1 -1 +1
E 42 -1 0 0 +2
1 +3 0 -1 +1 —1
Il +3 O +1 -1 —1

The entries consist of characters, the trace of the matrices representing group
elements of the column’s class in the given row’s group representation.



Finite-volume symmetry

We tabulate the irreps by class on a character table

O 1 8C; 6Cy 6C; 3

A +1 +1
Ay +1  +1
E 42 -1
1 +3 0
Il +3 O

+1

(Cy)”
+1 x(g)ZTf(F(g)) Vg € G

0 +2
+1 —1
—1 —1

The entries consist of characters, the trace of the matrices representing group
elements of the column’s class in the given row’s group representation.
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Finite-volume symmetry

We tabulate the irreps by class on a character table

8Cy 60y 60y 3(Cy)°

+1  +1  +1 +1
—1 0 0 +2
0 -1 +1 —1
0 +1 -1 —1

Dimension!!

The entries consist of characters, the trace of the matrices representing group
elements of the column’s class in the given row’s group representation.



Finite-volume symmetry

We tabulate the irreps by class on a character table
o Number of non-identical transformations!!
O 1 8C; 60, 6C(3]Cy)

A +1 +1 41 +1 -1
A, +1 +1 -1 -1 +1
E 42 -1 0 0 +2
1 +3 0 -1 +1 —1
Il +3 O +1 -1 —1

The entries consist of characters, the trace of the matrices representing group
elements of the column’s class in the given row’s group representation.



Finite-volume symmetry

We tabulate the irreps by class on a character table

1 8Cs; 6Cy 6C; 3(Cy)°
1 +1 1 +1 '

Orthogonality!!

The entries consist of characters, the trace of the matrices representing group
elements of the column’s class in the given row’s group representation.
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Finite-volume symmetry: explicit irreps (d = 3)

Lets define some of the specific irreps of the operations we introduced

T T 1 0
1y | = | v - 1=| 0 1
z Z 0 O

Rotation of +7/2 about X,y,z axes 6C,

Simple vector (x,V, 2) What about (yz,xz,xy) ??

x x 1 0 0 Y2 —yz

C:(D)| v | — z | —C.(1)= 0 0 =41 C,(1) ( - ) _ ( Ty ) — Cyz(1) = (
z mayy 0 =1 0 Ty 2
x Fz 0 0 =F1 Yz oy

G, v | = y | — Cy(l) = 01 0 (1) ( Tz ) o ( —x2 ) — Cy(1) = (
z +x +1 0 0 7 Tz
T Y O £1 O Yz +Iz

C.(1) ( Y ) — ( Fr ) — C,(1) = ( F1 0 0 C,(1) ( o ) _ (
2 2 0 0 1 Ty

+yz ) — Cpy(1) = ( -
2y



Finite-volume symmetry: explicit irreps (d = 3)

T, representations:

1 0 O

1 0 1 0

0 0 1
803 602 604
O =£1 0 1 0
+1 0 0 0 0
0 0 1 0 0 — 0 F1
09 n ¥
0 —1 0 v
O 1 O s O O 221 O
0 0 1 0 =+£1
1 0 0 PR 10
0 O 1 0 0

More possible sign 0 =+ 0

combinations!!

_o O OO = O = O

OV
~—~
Q
—
(\)

S = O O = O

-
|
O~ O

—_ o O = O O VO O
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Finite-volume symmetry: Recap

Symmetry operations on the octahedral group O

Operation No. Class Label
identity 1 1
90° about axes through centres of opposite faces 6 Cy
180° about the same axes 3 C?
120° about diagonals connecting opposite vertices 8 C's
180° about axes through centers of opposite edges 6 C

24

Character table

O 1 8C3 60y 6Cy 3(Cy)

Aq 1 1
Ay +1 + — — +1
E 42 -1 0 0 +2
1 +3 0 -1 +1 —1
Il +3 O +1 -1 —1
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Finite-volume symmetry: Subductions

So, how does angular momentum subduce into O irreps?

We can invert the table

Ay A, E Ty 15

J=01| 1

J =1 1

J=2 1

J =3 1 1

J=41 1 1 1
A Dimension J
Aq 1 0,4, .
As 1 3,9, .
E 2 2.4, .
T 3 1,3,.
T5 3 2.3
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Finite-volume symmetry: Subductions

So, how does angular momentum subduce into O irreps?

A1 Ay E T7 15 # Rows

~ NS SN S
|
INGN VRN NG e

O N W W

We can invert the table

A Dimension J
Aq 1 0,4, .
As 1 3,9, .
E 2 2.4, .
T 3 1,3,.
T5 3 2,3, .



Questions? — Some water?

Next day: Subductions and the GEVP
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