Di-muon simulations: status & plans

Partha Pratim Bhaduri (VECC, Kolkata)

1

Ongoing studies

Studying (physics) performance of new much geometry: v23a

Testing the effect of realistic digitization parameters of dimuon reconstruction

Dimuon reconstruction with Machine Learning (ML) algorithms

Jpsi simulation with non-thermal input distribution

Target: Contributions in cbm progress report 2023 Comprehensive results before upcoming collaboration meeting (March, 2024)

Testing new (realistic) MuCh geometry

100k 8A GeV central Au+Au collisions

Comparable performance both MuCh geometries

Pawan K. Sharma

Effect of realistic digitization

Simulations with v23a much geometry

Increased charge threshold for GEM and reduced threshold for RPC

Larger spot radius for RPC

Abhishek K. Sharma

Di-muon reconstruction with ML

Pawan K. Sharma

Manual cuts

TMVA:BDTG-1

For similar S/B, factor of 3 improvement in pair efficiency Softer cuts leading to extended phase space coverage Test different ML agorithms Extend to other Imvm

Comparison of different ML algorithms

J/ψ simulations with <code>PYTHIA</code>

Distinctly different (y,pT) distribution with PYTHIA compared to PLUTO Need to decay into dimuons and transport through cbm detector set up for full simulation