Hyperon production in antiproton-proton annihilations with PANDA

Karin Schöningen, Uppsala University

at the FAIRNESS Workshop for Young Scientists, Sept. 15-21, 2013, Berlin, Germany
Outline

• Strangeness production – a probe of QCD in the confinement domain
• Strange and charmed hyperons Y
• Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$
 – spin $\frac{1}{2}$ hyperons
 – spin $\frac{3}{2}$ hyperons
• CP violation
• Existing data
• Prospects for PANDA
Strangeness production – a probe of QCD in the confinement domain

One of the most important questions in contemporary physics:

”What is the nature of the strong interaction in the confinement domain?”

• Light quark (u, d) production: non-perturbative, relevant degrees of freedom are hadrons, interactions described by Effective Field Theories.

• Scale of strangeness production $\approx m_s \approx 150$ MeV near QCD cut-off $\Lambda_{\text{QCD}} \approx 200$ MeV \rightarrow relevant degrees of freedom ambiguous.

• Scale of charm production $\approx m_c \approx 1300$ MeV almost ten times larger. pQCD more relevant.

\rightarrow Strangeness production probes the intermediate domain which we know very little about!
Strange and charmed hyperons

Hyperons contain one or more heavy quarks (s, c, b). This talk: focus on strangeness and single charm.

$SU(4)$ predicts two 20-plets.

We know that $SU(4)$ is not a good symmetry ($m_c \gg m_{s,u,d}$).

$SU(3)$ is approximately valid and the $SU(3)$ octet and decuplet are confirmed by experiment.
Strange and charmed hyperons

\[\bar{p}p \rightarrow \bar{\Lambda}\Lambda, \ \bar{\Sigma}^{-}\Sigma^{+}, \ \bar{\Sigma}^{0}\Sigma^{0}, \ \bar{\Sigma}^{-}\Sigma^{+}, \ \bar{\Xi}^{0}\Xi^{0}, \ \bar{\Xi}^{+}\Xi^{-}, \ \bar{\Omega}^{+}\Omega^{-}, \ \bar{\Lambda}_{c}^{-}\Lambda_{c}^{+} \]

\[p\pi^{-} \quad p\pi^{0} \quad \Lambda\gamma \quad n\pi \quad \Lambda\pi^{0} \quad \Lambda\pi \quad \Lambda K \quad \Lambda\pi \]

64% \quad 52% \quad \approx 100\% \quad \approx 100\% \quad \approx 100\% \quad \approx 100\% \quad 68\% \quad \approx 1\%

Decay weakly \(\rightarrow \) life time relatively long (\(\approx 10^{-10} \) s) \(\rightarrow \) production and decay vertices well separated.

But how are they produced?
Strangeness production – a probe of QCD in the confinement domain

Models based on the quark-gluon picture* and on the hadron picture** or a combination of the two ***

* PLB 179 (1986); PLB 165 (1985) 187; NPA 468 (1985) 669;
** PRC 31 (1985) 1857; PLB 179 (1986); PLB 214 (1988) 317;
*** PLB 696 (2011) 352.
Open questions in hyperon physics

• What are the relevant degrees of freedom?
• To what extent is SU(3) symmetry broken?
• Do all hyperons have the expected spin and parity?
• Quark structure of hyperons?
• Universe consists of matter, not antimatter. Why? CP violation needed as a part of the explanation.*

* A.D. Sakharov, JETP Lett 5 (1976)24
Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

Spin observables is a powerful tool in testing models.

In a pure ensemble the expectation value of an observable E is:

$$\langle E \rangle = \langle \Psi | E | \Psi \rangle$$

where the $|\Psi\rangle$ ket describe every member of the ensemble.

Introduce an orthonormal basis $\{|a_k\rangle\}$:

$$\langle E \rangle = \langle \Psi | \left(\sum_k |\alpha_k\rangle \langle \alpha_k | \right) E | \Psi \rangle = \sum_k \langle \Psi | \alpha_k \rangle \langle \alpha_k | E | \Psi \rangle =$$

$$= \sum_k \langle \alpha_k | E | \Psi \rangle \langle \Psi | \alpha_k \rangle = \text{Tr}(E | \Psi \rangle \langle \Psi |)$$

If the density matrix is defined by $\rho \equiv |\Psi\rangle \langle \Psi |$, then $\langle E \rangle = \text{Tr}(E \rho)$. The density matrix transforms as

$$\rho_{\text{final}} = T \rho_{\text{initial}} T^\dagger$$

In case of decay of a particle with spin density matrix ρ, the angular distribution of the daughter particle is given by

$$I = \text{Tr}(T \rho_{\text{initial}} T^\dagger)$$
Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

The spin density matrix of a particle with arbitrary spin is given by

$$\rho = \frac{1}{2j+1} \mathcal{I} + \sum_{L=1}^{2j} \rho^L$$

with

$$\rho^L = \frac{2j}{2j+1} \sum_{M=-L}^{L} Q^L_M r^L_M$$

where Q^L_M are hermitian matrices and r^L_M polarisation parameters.

- Spin $\frac{1}{2}$: 3 polarisation parameters: r_{-1}^1, r_0^1 and r_1^1.
- Spin $\frac{3}{2}$: 15 polarisation parameters: r_{-1}^1, r_0^1, r_1^1, r_{-2}^2, r_{-1}^2, r_0^2, r_1^2, r_2^2, r_3^3, r_{-2}^3, r_{-1}^3, r_0^3, r_1^3, r_2^3 and r_3^3.
- Degree of polarisation given by:

$$d(\rho) = \sqrt{\sum_{L=1}^{2j} \sum_{M=-L}^{L} (r^L_M)^2}$$
Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

Spin $\frac{1}{2}$:

- The Q_M^L are the Pauli matrices.
- Polarisation parameters r_0^1, r_{-1}^1 and r_1^1 are P_x, P_y and P_z.

The spin density matrix of one spin $\frac{1}{2}$ particle is given by:

$$\rho(1/2) = \frac{1}{2} (\mathbb{1} + \vec{P} \cdot \vec{\sigma}) = \frac{1}{2} \begin{bmatrix} 1 + P_z & P_x + iP_y \\ P_x - iP_y & 1 - P_z \end{bmatrix}$$

Symmetry from parity conservation (strong production) requires $P_x = P_z = 0$, which gives:

$$\rho(1/2) = \frac{1}{2} \begin{bmatrix} 1 & iP_y \\ -iP_y & 1 \end{bmatrix}$$

Polarisation normal to the production plane!
Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

Spin $\frac{1}{2}$ hyperons:
Parity violating decay \rightarrow the decay products are emitted according to the polarisation of the mother hyperon.

Angular distribution of the final state is given by $I(\theta, \varphi) = \text{Tr}(T \rho T^*)$
where T is the decay matrix with one p-conserving part T_s and one p-violating part T_p.

If one defines $\alpha = 2\text{Re}(T_s^* T_p)$
$\beta = 2\text{Im}(T_s^* T_p)$
$\gamma = |T_s|^2 - |T_p|^2$

Then $\alpha^2 + \beta^2 + \gamma^2 = 1$

it can be shown that the decay angular distribution becomes

$I(\cos\theta_p) = N(1+\alpha P Y \cos\theta_p)$

This makes the polarisation of hyperon experimentally accessible.
Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

If the decay product of the hyperon is a hyperon, e.g. $\Xi \rightarrow \Lambda K$, then also β and γ can be obtained from the decay protons of the Λ.

Redefine reference system such that:
- Spin of Ξ along \hat{z}
- p_Λ in xz-plane ($p_y = 0$)

Then the proton angular distribution becomes:

$$I(\theta_p, \phi_p) = \frac{1}{4\pi} \left[1 + \alpha_{\Xi} \alpha_\Lambda \cos \theta_p + \frac{\pi}{4} \alpha_\Lambda P \sin \theta_p (\beta_\Xi \sin \phi_p - \gamma_\Xi \cos \phi_p) \right]$$
Spin observables in $\bar{p}p \rightarrow \bar{Y}Y$

The spin observables of the full $\bar{p}p \rightarrow \bar{Y}Y$ process can be obtained from the angular distributions of decay baryons, using

$$\rho_{\bar{B}B} = \frac{I_{Y}^{YY}}{16\pi} \sum_{\mu, \nu=0}^{3} \sum_{i, j=0}^{3} P_{i}^{\bar{p}} P_{j}^{p} \chi_{ij\mu\nu} T_{Y} T_{Y} \sigma_{\mu}^{1} \sigma_{\nu}^{2} T_{Y}^{\dagger} T_{Y}^{\dagger}$$

where P_{j}^{p} is the polarisation vectors of the initial proton, and

$$\chi_{ij\mu\nu} = \frac{\text{Tr}(\sigma_{\mu}^{1} \sigma_{\nu}^{2} M \sigma_{i}^{1} \sigma_{j}^{2} M^{\dagger})}{\text{Tr}(MM^{\dagger})}$$

and

$$I_{0}^{YY} = \frac{1}{4} \text{Tr}(MM^{\dagger})$$

256 spin variables
unpol. ang. distribution

<table>
<thead>
<tr>
<th>Polarised Particle</th>
<th>None</th>
<th>Beam</th>
<th>Target</th>
<th>Both</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>I_{0000}</td>
<td>A_{i000}</td>
<td>A_{i0j0}</td>
<td>A_{iij0}</td>
</tr>
<tr>
<td>Scattered</td>
<td>$P_{0000}^{\mu0}$</td>
<td>$D_{i0\mu0}$</td>
<td>K_{i0j0}</td>
<td>$M_{ij\mu0}$</td>
</tr>
<tr>
<td>Recoil</td>
<td>P_{0000}^{ν}</td>
<td>$K_{i00\nu}$</td>
<td>$D_{0j0\nu}$</td>
<td>$N_{ij0\nu}$</td>
</tr>
<tr>
<td>Both</td>
<td>$C_{00\mu\nu}$</td>
<td>$C_{i0\mu\nu}$</td>
<td>$C_{0ij\mu\nu}$</td>
<td>$C_{ij\mu\nu}$</td>
</tr>
</tbody>
</table>

I – angular distribution
A – analysing power
P – polarisation
D – depolarisation
K – polarisation transfer
C – spin correlations
M, N – spin corr. tensor
Spin observables in $\bar{p}p \rightarrow YY$

The angular distribution is obtained by the trace $I_0^{BB} = \text{Tr}(\rho^{BB})$.

With an unpolarised beam and unpolarised target this becomes

$$I_0^{BB}(\Theta_Y, \hat{k}, \hat{k}) = \frac{I_0}{64\pi^3} \begin{pmatrix}
1 \\
+P_{Y,y} \bar{\alpha}k_y + P_{Y,y} \alpha k_y \\
+C_{xx} \bar{\alpha} \alpha k_x k_x \\
+C_{yy} \bar{\alpha} \alpha k_y k_y \\
+C_{zz} \bar{\alpha} \alpha k_z k_z \\
+C_{xz} \bar{\alpha} \alpha k_x k_z \\
+C_{zx} \bar{\alpha} \alpha k_z k_x
\end{pmatrix}.$$

k being the direction vector of the decay proton.
Spin observables in $\overline{pp} \rightarrow \overline{YY}$

Spin $\frac{3}{2}$ case much more complicated.

Erik Thomé has derived the observables in his Ph. D. thesis.*

The spin density matrix is given by

$$\rho(3/2) =$$

$$\begin{bmatrix}
1 + \sqrt{3}r_0^2 & i\frac{3}{\sqrt{5}}r_{-1}^1 - \sqrt{3}r_1^2 & \sqrt{3}r_2^2 - i\sqrt{3}r_{-2}^3 & -i\sqrt{6}r_{-3}^3 \\
-i\frac{3}{\sqrt{5}}r_{-1}^1 - \sqrt{3}r_1^2 & 1 - \sqrt{3}r_0^2 & i2\sqrt{\frac{3}{5}}r_{-1}^1 + i3\sqrt{\frac{2}{5}}r_{-1}^3 & \sqrt{3}r_2^2 + i\sqrt{3}r_{-2}^3 \\
\sqrt{3}r_2^2 + i\sqrt{3}r_{-2}^3 & -i2\sqrt{\frac{3}{5}}r_{-1}^1 - i3\sqrt{\frac{2}{5}}r_{-1}^3 & 1 - \sqrt{3}r_0^2 & i\frac{3}{\sqrt{5}}r_{-1}^1 + \sqrt{3}r_1^2 \\
i\sqrt{6}r_{-3}^3 & \sqrt{3}r_2^2 - i\sqrt{3}r_{-2}^3 & -i\frac{3}{\sqrt{5}}r_{-1}^1 + \sqrt{3}r_1^2 & 1 + \sqrt{3}r_0^2
\end{bmatrix}$$

Spin observables in $\bar{p}p \to \bar{Y}Y$

$\begin{align*}
\text{Spin} & \quad \frac{3}{2} \quad \text{hyperons} \\
\text{In the case of} \quad p\bar{p} \to \Omega\bar{\Omega}, \quad \text{with the decay} \quad \Omega \to \Lambda K, \\
\text{the polarisation parameters} \quad r_2^2, \ r_1^2, \ r_0^2 \text{ can be} \\
\text{retrieved from the angular distribution of the} \ \Lambda. \\

r_0^2 &= \frac{15}{2\sqrt{3}} \left(\frac{1}{3} - \langle \cos^2 \theta_\Lambda \rangle \right) \\
r_2^2 &= \frac{8}{3} \left(1 - \langle \cos^2 \theta_\Lambda \rangle - 2 \langle \sin^2 \theta_\Lambda \sin^2 \phi_\Lambda \rangle \right) \\
r_1^2 &= 5 \langle \cos \theta_\Lambda \sin \theta_\Lambda \cos \phi_\Lambda \rangle \\
\text{whereas the moduli of} \quad r_3^3, \ r_2^3, \ r_3^1, \ r_1^1 \text{ are} \\
\text{obtained by combining angular distribution of} \ \Lambda \\
\text{with the angular distribution of the decay proton from} \ \Lambda \to p\pi. * \\
\end{align*}$

* E. Thomé, Ph.D. Thesis, Uppsala University

and later work
The moduli of four polarisation parameters can be determined:

Assumption 1: $\alpha_\Omega = 0$, Consistent with experiment *

Assumption 2: $\beta_\Omega \approx 0$, $\gamma_\Omega \approx 1$ (not known)

CP violation in hyperon systems

• CP violation of baryon system has never been observed.
• The $\bar{pp} \rightarrow \bar{YY}$ process suitable for CP measurements (clean, no mixing)
• According to experiment, $\alpha = \bar{\alpha}$ for Λ.
• CP violation parameters:

$$A = \frac{\Gamma \alpha + \bar{\Gamma} \bar{\alpha}}{\Gamma \alpha - \bar{\Gamma} \bar{\alpha}} \approx \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}}$$

Consistent with 0 for Λ and Ξ, but to confirm or rule out or confirm χPT, Supersymmetry, more precise measurements are needed.

$$B = \frac{\Gamma \beta + \bar{\Gamma} \bar{\beta}}{\Gamma \beta - \bar{\Gamma} \bar{\beta}} \approx \frac{\beta + \bar{\beta}}{\beta - \bar{\beta}}$$

Accessible for Ξ since the polarisation of the decay products can be measured.

$$B' = \frac{\Gamma \beta + \bar{\Gamma} \bar{\beta}}{\Gamma \alpha - \bar{\Gamma} \bar{\alpha}} \approx \frac{\beta + \bar{\beta}}{\alpha - \bar{\alpha}}$$

No previous measurement.
Existing data on \(\bar{p}p \rightarrow \bar{Y}Y \)

- Lots of data on \(\bar{p}p \rightarrow \bar{\Lambda}\Lambda \) near threshold, mainly from PS185.
- Very few data above 4 GeV.
- Only a few bubble chamber events on \(\bar{p}p \rightarrow \Xi\Xi \).
- No data on \(\bar{p}p \rightarrow \bar{\Omega}\Omega \) nor \(\bar{p}p \rightarrow \bar{\Lambda}_c\Lambda_c \).
Existing data on $\bar{p}p \rightarrow \bar{YY}$

- Data on P, D, K and C for $\bar{p}p \rightarrow \Lambda\Lambda$
- $\Lambda\Lambda$ almost always produced in a spin triplet state:
 \[
 SF = \frac{1}{4} (1 + C_{xx} - C_{yy} + C_{zz})
 \]
- Neither the quark-gluon picture (dotted) nor hadron exchange (solid and dashed) describe data perfectly.
Prospects for PANDA at FAIR

- Unpolarised beam and target.
- Good vertex resolution necessary.
- For more details, see talk by E. Fioravanti, this Friday.
Prospects for PANDA at FAIR

Light hyperons (Λ, Σ):
- High event rate, low background
- Acceptance over full angular range

<table>
<thead>
<tr>
<th>Momentum [GeV/c]</th>
<th>Reaction</th>
<th>Rate [s⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.64</td>
<td>$\bar{p}p \to \Lambda\Lambda$</td>
<td>580</td>
</tr>
<tr>
<td>4</td>
<td>$\bar{p}p \to \Lambda\Lambda$</td>
<td>980</td>
</tr>
<tr>
<td></td>
<td>$\bar{p}p \to \Xi^+\Xi^-$</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>$\bar{p}p \to \Lambda\Xi^-$</td>
<td>120</td>
</tr>
</tbody>
</table>

Results by Sophie Grape, Ph. D. Thesis, Uppsala 2009

- $\bar{p}p \to \Lambda\Lambda$
Prospects for PANDA at FAIR

Heavy hyperons: Simulation studies show high event rate and good detection efficiency over the full angular region.

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012)

<table>
<thead>
<tr>
<th></th>
<th>$\bar{p}p \rightarrow \Xi^+\Xi^-$</th>
<th>$\bar{p}p \rightarrow \Omega^+\Omega^-$</th>
<th>$\bar{p}p \rightarrow \bar{\Lambda}_c^-\Lambda_c^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>beam momentum [GeV/c]</td>
<td>4</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>reconstruction efficiency [%]</td>
<td>17</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>σ</td>
<td>$\sim 2 \mu b$</td>
<td>~ 2 nb</td>
<td>$\sim 0.1 \mu b$</td>
</tr>
<tr>
<td>expected # of events</td>
<td>~ 30/s</td>
<td>~ 80/hour</td>
<td>~ 25/day</td>
</tr>
</tbody>
</table>

$\bar{p}p \rightarrow \Xi^+\Xi^-$

$\bar{p}p \rightarrow \Xi^+\Xi^-$

$\bar{p}p \rightarrow \Xi^+\Xi^-$

$\bar{p}p \rightarrow \Xi^+\Xi^-$
Prospects for PANDA at FAIR

$\bar{p}p \rightarrow \bar{\Omega}\Omega$

$\bar{p}p \rightarrow \bar{\Lambda}_c\Lambda_c$

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012)
Prospects for PANDA at FAIR

CP violation:

• Measurable in Λ and Ξ decay
• Particle ID requirement gives systematic bias – better measure without ID
• Only tracks near the beam pipe should be considered.

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012)
Summary

• Hyperon production is a probe of the Strong Interaction in the confinement domain.

• CP violation measurements of hyperon systems provide a clean test of e.g. physics beyond the Standard Model.

• Spin observables of the $p\bar{p} \rightarrow \Omega \bar{\Omega}$ process recently derived by the Uppsala group.

• Simulation studies by the Uppsala group show excellent prospects for ALL antihyperon-hyperon channels with PANDA:
 – High event rate
 – Low background
 – Good detection efficiency over the full phase space

Thanks to: Sophie Grape, Tord Johansson and Erik Thomé