Beam energy scan using a viscous hydro+cascade model

Yuriy KARPENKO

Frankfurt Institute for Advanced Studies/ Bogolyubov Institute for Theoretical Physics

FAIRNESS 2013, September 21, 2013

In collaboration with M. Bleicher, P. Huovinen, H. Petersen

Introduction: heavy ion collision in pictures¹

Typical size $10 \text{ fm} \propto 10^{-14} \text{m}$

Typical lifetime 10 fm/c $\propto 10^{-23}$ s

10⁻⁸sec after the collision: hadrons are detected

¹https://www.jyu.fi/fysiikka/tutkimus/suurenergia/urhic/anim1.gif/ image_view_fullscreen

Yuriy Karpenko (FIAS/BITP)

Energy scan using visc.hydro+cascade

"Stages of Heavy Ion Collision"

- Initial(pre-thermal) stage
 - Thermalization
- e Hydrodynamic expansion
 - Quark-gluon plasma phase
 - Phase transition
 - Hadron Gas phase
 - Chemical freeze-out
 - End of hydrodynamic regime
- Kinetic stage

Kinetic freeze-out

∜

Free streaming, then hadrons are detected

1. Ingredients of hydro+cascade model:

- Initial stage model Enforced thermalization
- e Hydrodynamic solution
 - Equation of state for hydrodynamics
 - transport coefficients
- Particlization and switching to a cascade

 \Leftrightarrow

Where do we want to apply it

Where do we want to apply it

- small net baryon density: hydro(+cascade) model is well established arXiv: "hydrodynamic" + "RHIC" = 42 publications
- large net baryon density: arXiv: "hydrodynamic" + "SPS" = 8 publications arXiv: "hydrodynamic" + "FAIR" = 3 publications

Yuriy Karpenko (FIAS/BITP)

Energy scan using visc.hydro+cascade

Ingredients essential for beam energy scan studies are marked red.

EoS reference: J. Steinheimer, S. Schramm and H. Stocker, J. Phys. G 38, 035001 (2011).

- 1. Ingredients of the model:
 - Initial stage: UrQMD
 - e Hydrodynamic solution
 - Equation of state for hydrodynamics: Chiral model coupled to Polyakov loop to include the deconfinement phase transition
 - * good agreement with lattice QCD data at $\mu_B = 0$
 - Applicable also at finite baryon densities
 - transport coefficients
 - Particlization and switching back to cascade (UrQMD)

- E - N

Initial conditions for hydrodynamic evolution

 $au = \sqrt{t^2 - z^2} = au_0$ (red curve): $T^{0\mu}$ of fluid = averaged $T^{0\mu}$ of particles

Hydrodynamic stage

The hydrodynamic equations in arbitrary coordinate system:

$$\partial_{;\nu}T^{\mu\nu} = \partial_{\nu}T^{\mu\nu} + \Gamma^{\mu}_{\nu\lambda}T^{\nu\lambda} + \Gamma^{\nu}_{\nu\lambda}T^{\mu\lambda} = 0$$
(1)

where (we choose Landau definition of velocity)

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - (p + \Pi) (g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu}$$
(2)

and $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$

Evolutionary equations for shear/bulk, coming from Israel-Stewart formalism:

$$< u^{\gamma}\partial_{;\gamma}\pi^{\mu\nu} > = -rac{\pi^{\mu\nu} - \pi^{\mu\nu}_{NS}}{ au_{\pi}} - rac{4}{3}\pi^{\mu\nu}\partial_{;\gamma}u^{\gamma}$$
 (3a)

$$u^{\gamma}\partial_{;\gamma}\Pi = -\frac{\Pi - \Pi_{\rm NS}}{\tau_{\Pi}} - \frac{4}{3}\Pi\partial_{;\gamma}u^{\gamma} \tag{3b}$$

where

$$<$$
 $A^{\mu
u}>=(rac{1}{2}\Delta^{\mu}_{lpha}\Delta^{
u}_{eta}+rac{1}{2}\Delta^{
u}_{lpha}\Delta^{\mu}_{eta}-rac{1}{3}\Delta^{\mu
u}\Delta_{lphaeta})A^{lphaeta}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Fluid → particle transition

 $\varepsilon = \varepsilon_{sw} = 0.5 \text{ GeV/fm}^3$ (end of green zone): $T^{0\mu}$ of hadron-resonance gas = $T^{0\mu}$ of fluid

Momentum distribution from Landau/Cooper-Frye prescription:

$$p^{0} \frac{d^{3} n_{i}}{d^{3} p} = \int \frac{g_{i}}{(2\pi)^{3}} \frac{1}{\exp\left(\frac{p^{\nu} u_{\nu}(x) - \mu_{i}(x)}{T(x)}\right) \pm 1} p^{\mu} dx$$

Cornelius subroutine^{*} is used to compute $\Delta \sigma_i$ on transition hypersurface. UrQMD cascade is employed after particlization surface.

*Huovinen P and Petersen H 2012, Eur. Phys. J. A 48 171

Model validation at top RHIC energy

Setup: smooth 3D initial conditions

$$\varepsilon(\tau_0, \vec{r}_T, \eta) = \varepsilon_{\mathsf{MCG}}(\vec{r}_T) \cdot \theta(Y_b - |\eta|) \exp\left[-\theta(|\eta| - \Delta \eta) \frac{(|\eta| - \Delta \eta)^2}{\sigma_\eta^2}\right]$$

 Y_b is beam rapidity, parameters: $\Delta \eta = 1.3$, $\sigma_{\eta} = 2.1$ (chosen from the fit to PHOBOS $dN_{ch}/d\eta$)

(4) The field

4 冊

Beam energy scan (BES)

Yuriy Karpenko (FIAS/BITP)

Energy scan using visc.hydro+cascade

FAIRNESS 2013, September 21, 2013 9 / 18

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Results: $E_{lab} = 158 \text{ A GeV Pb-Pb}$ (SPS)

 $\sqrt{s_{NN}} = 17.3$ GeV, 0-5% central collisions (b = 0...3.4 fm)

Results: $E_{lab} = 158 \text{ A GeV Pb-Pb}$ (SPS)

 $\sqrt{s_{NN}} = 17.3 \text{ GeV}, 0.5\% \text{ central collisions } (b = 0...3.4 \text{ fm})$

Yuriy Karpenko (FIAS/BITP)

Results: $E_{lab} = 158 \text{ A GeV Pb-Pb}$ (SPS)

Mid-central events as defined by NA49 (c = 12.5 - 33.5%)

Image: Image:

- E - - E

Results: $E_{lab} = 80,40,20 \text{ A GeV Pb-Pb}$ (SPS)

10

(yb

r²N/(m_T dm

0.4

E_{iab} = 80 A GeV ideal + UrQMD m/S=0.1 + UrQMD

> ΝΑ49 π-ΝΑ49 Κ-

NA49 K+

n/S=0.2 + UrQMD

Corresp. $\sqrt{s_{NN}} = 12.3, 8.8, 6.3 \text{ GeV}$

Pion & kaon pt-distributions for most central events (c = 0-5%, b = 0...3.4 fm)

Overall good description with $\eta/S = 0.2$ except for K^- for lowest energies

v_2 for BES at RHIC ($\sqrt{s_{NN}} = 7.7, 27, 39$ GeV Au-Au)

 $\eta/S \ge 0.2$ is required in hydro phase for all BES energies.

K^+/π^+ , K^-/π^- vs collision energy

 $K + /\pi +$ decreases and $K - /\pi -$ increases due to additional entropy production in viscous hydro phase

HBT(interferometry) measurements

The only tool for space-time measurements at the scales of 10^{-15} m, 10^{-23} s

Yuriy Karpenko (FIAS/BITP)

Femtoscopy at SPS energies

Corresponding $\sqrt{s_{NN}} = 12.3, 8.8, 6.3$ GeV, NA49, most central collisions (c = 0 - 5%)

Femtoscopic radii for $\pi^-\pi^-$ pairs: $R_{\text{long}}, R_{\text{out}}$ consistent with NA49 data, R_{side} underestimated.

Femtoscopy at top SPS energy

 $E_{\text{lab}} = 158 \text{ A GeV SPS} (\sqrt{s_{NN}} = 17.3 \text{ GeV})$

Dependence on η/S

 R_{long} is increased and $R_{\text{out}}/R_{\text{side}}$ is slightly improved by viscosity

Summary

Viscous hydro + UrQMD model:

- 3+1D viscous hydrodynamics
- EoS at finite μ_B (Chiral model)

Conclusions:

- model validated at top RHIC energy, and applied for BES.
- shear viscosity in hydro phase improves description of
 - *p_T*-spectra
 - ► dN/dy
 - elliptic flow
 - femtoscopic radii
- v_2 from RHIC BES suggests $\eta/S \ge 0.2$

(B)

Summary

Viscous hydro + UrQMD model:

- 3+1D viscous hydrodynamics
- EoS at finite μ_B (Chiral model)

Conclusions:

- model validated at top RHIC energy, and applied for BES.
- shear viscosity in hydro phase improves description of
 - *p_T*-spectra
 - ► dN/dy
 - elliptic flow
 - femtoscopic radii
- v_2 from RHIC BES suggests $\eta/S \ge 0.2$

Thank you for your attention!

Extra slides

Yuriy Karpenko (FIAS/BITP)

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Viscous hydrodynamic equations

The hydrodynamic equations in arbitrary coordinate system:

$$\partial_{;\nu} T^{\mu\nu} = \partial_{\nu} T^{\mu\nu} + \Gamma^{\mu}_{\nu\lambda} T^{\nu\lambda} + \Gamma^{\nu}_{\nu\lambda} T^{\mu\lambda} = 0$$
(4)

where (we choose Landau definition of velocity)

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} - (\rho + \Pi) (g^{\mu\nu} - u^{\mu} u^{\nu}) + \pi^{\mu\nu}$$
(5)

and $\Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu}u^{\nu}$

Evolutionary equations for shear/bulk, coming from Israel-Stewart formalism:

$$< u^{\gamma}\partial_{;\gamma}\pi^{\mu\nu} > = -rac{\pi^{\mu\nu} - \pi^{\mu\nu}_{NS}}{ au_{\pi}} - rac{4}{3}\pi^{\mu\nu}\partial_{;\gamma}u^{\gamma}$$
 (6a)

$$u^{\gamma}\partial_{;\gamma}\Pi = -\frac{\Pi - \Pi_{\rm NS}}{\tau_{\Pi}} - \frac{4}{3}\Pi\partial_{;\gamma}u^{\gamma} \tag{6b}$$

where

$$<$$
 $A^{\mu\nu}>=(rac{1}{2}\Delta^{\mu}_{lpha}\Delta^{
u}_{eta}+rac{1}{2}\Delta^{
u}_{lpha}\Delta^{\mu}_{eta}-rac{1}{3}\Delta^{\mu
u}\Delta_{lphaeta})A^{lphaeta}$

A (B) > A (B) > A (B) >

Typical smooth (event-averaged) initial condition for $E_{lab} = 168 \text{ A GeV}$ midcentral SPS collisions.

energy density [GeV/fm³] distribution:

18/18

Typical smooth (event-averaged) initial condition for $E_{lab} = 168 \text{ A GeV}$ midcentral SPS collisions.

 v_{η} distribution (notice nonzero angular momentum!):

Yuriy Karpenko (FIAS/BITP)

18/18

v_2 before and after the cascade $\eta/S = 0$

full vs hydro_only

Transition surfaces

hydro→cascade transition

Most central collisions, $E_{lab} = 20 \text{ GeV} (cyan)...158 \text{ GeV} (red)$ $\sqrt{s_{NN}} = 6.27 ...17.3 \text{ GeV}$

Transition criterion: $\varepsilon = \varepsilon_{crit} = 0.5 \text{ GeV/fm}^3$, same for all energies

System squeezes in rapidity with decreasing collision energy, hydro phase still lasts about 4.5 fm/c at lowest SPS energy.

Thermodynamics on transition surface

 $\begin{array}{l} \text{Procedure (for each surface element):} \\ \{\varepsilon = \varepsilon_{\text{crit}}, n_B, n_Q\} \xrightarrow{EoS} \{T, \mu_B, \mu_Q, \mu_S\} \end{array}$

Most central collisions, $E_{\text{lab}} = 20 \text{ GeV (cyan)...158 GeV (red)}$ $T(\text{rapidity}) \text{ (top)}, T(\tau) \text{ (bottom left)},$ $\mu_B(\tau) \text{ (bottom right)}$

0,16

0.155

0.145

0.14

0,135

trans [GeV]

=158 GeV

