FAIRNESS 2013 Berlin, September 16-21 2013

The $\psi(4040)$ at the future PANDA experiment

L. Zotti¹, A. Filippi², S. Marcello¹, S. Spataro¹

1) Università degli Studi di Torino & INFN Torino 2) INFN Torino

The $\psi(4040)$ at the future $\overline{P}ANDA$ experiment

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •

Outlines

PANDA Physics and Experimental Setup

- Charmonium System
- ψ(4040)
 - Motivations
 - Cross Section
 - Study of Momentum Distributions
 - Analysis Strategy
 - Results
 - Preliminary Estimation S/B

Conclusions

The $\psi(4040)$ at the future $\overline{P}ANDA$ experiment

-PANDA Physics and Experimental Setup

PANDA Physics and Experimental Setup

PANDA is one of the experiments of the new FAIR facility at GSI. Antiproton beam will be available with a beam momentum from 1.5 up to 15 GeV/c in HESR.

see talk of E. Fioravanti "Experimental overview of PANDA" (Friday 20th)

• Imp • • m • • m • m

- Charmonium

Charmonia and Charmonium-like system

ψ (4040)

ψ(4040)	$I^{G}(J^{PC}) = 0^{-}(1^{-})$	_	ψ(4040) DECAY MODES			
7 (7			Mode	Fraction $(\Gamma_I/f$) Cor	ifidence level
	ψ(4040) MASS	Γ ₁	e+ e-	(1.07 ± 0.16)) × 10 ⁻⁵	
		Γ2	DD	seen		
1020 ± 1 OUR ESTI	DOCUMENT ID TECN COMMENT	- Г _З	$D^0 \overline{D}^0$	seen		
4039 ± 1 00K ± 511	1 ABUKIM 080 BES2 $e^+e^- \rightarrow \text{ badrons}$	Γ ₄	$D^{+}_{-}D^{-}$	seen		
• • • We do not use the	e following data for averages, fits, limits, etc. • • •	Γ5	$D^*D + c.c.$	seen		
4034 ± 6	2 MO 10 RVIIE $e^{\pm}e^{-} \rightarrow badrons$	Γ ₆	$D^*(2007)^0 D^0 + c.c.$	seen		
4037 + 2	3 SETH 054 RVIE $e^+e^- \rightarrow hadrons$	Γ7	$D^{*}(2010)^{+}D^{-}$ + c.c.	seen		
4040 ± 1	⁴ SETH 05A RVUE $e^+e^- \rightarrow$ hadrons	8	D* D*	seen		
4040 ±10	BRANDELIK 78C DASP e ⁺ e ⁻	9	D*(2007) ⁶ D*(2007) ⁶	seen		
		110	D*(2010)+ D*(2010)-	seen		
	ψ (4040) WIDTH	11	$DD\pi(excl. D^+D)$			
		12	$D^{\circ}D^{-}\pi^{+}+c.c.$ (excl.	not seen		
00 ±10 OUD ESTIMA	TECN COMMENT		$D^{*}(2007)^{\circ}D^{\circ} + c.c.,$			
845+123	⁵ ABLIKIM 080 BES2 e ⁺ e [−] → badrons		$D^{-}(2010) \cdot D^{-} + c.c.)$			
• • • We do not use the	following data for averages, fits, limits, etc. • • •	13	$DD^*\pi(excl. D^*D^*)$	not seen		
87 +11	6 MO 10 RVUE $e^+e^- \rightarrow$ hadrons	14	$D^*D^* \pi^* + 0.0. (excl.)$	seen		
85 ±10	⁷ SETH 05A RVUE $e^+e^- \rightarrow$ hadrons		D'(2010) · D'(2010))			
89 ± 6	⁸ SETH 05A RVUE $e^+e^- \rightarrow$ hadrons	15	$D_s D_s$	seen		
52 ±10	BRANDELIK 78C DASP e ⁺ e ⁻	16	$J/\psi(1S)$ hadrons			
		17	$J/\psi \pi^+ \pi^-$	< 4	$\times 10^{-3}$	90%
		18	$J/\psi \pi^0 \pi^0$	< 2	× 10 ⁻³	90%
		19	$J/\psi\eta$	< 7	× 10 ⁻⁵	90%
		20	$J/\psi \pi^{0}$	< 2	$\times 10^{-3}$	90%
		21	$J/\psi \pi^+ \pi^- \pi^0$	< 2	× 10 ⁻³	90%
		22	$\chi_{c1} \gamma$	< 1.1	%	90%
	PDG-2012	23	$\chi_{c2}\gamma_{+} = -0$	< 1.7	%	90%
		24	$\chi_{c1} \pi^{-} \pi^{-} \pi^{-}$	< 1.1	70	90%
		25	$\chi_{c2} \pi^{-} \pi^{-} \pi^{-}$	< 3.2	70	90%
		26	$H_{C}(1P)\pi \cdot \pi$	< 3	× 10 ⁻³	90%
		27	$\phi \pi \cdot \pi$	< 3	× 10 ⁻⁵	90%
		28	$\mu \cdot \mu$			

Cross Section

$$p\overline{p}
ightarrow \psi(4040)
ightarrow D^{*+}D^{*-} @ p_{\overline{p}}=7.71 \text{ GeV/c}$$

 $D^{*+/-}
ightarrow D^{0}\pi^{+/-} ext{ BR: 67.7 \%}$
 $D^{0}
ightarrow K^{-}\pi^{+} ext{ BR: 3.88 \%}$

$$\sigma_R(s) = \frac{4\pi\hbar^2 c^2}{s - 2m_p^2 c^4} \frac{B_{in}B_{out}}{1 + (2(\sqrt{s} - M_R c^2)/\Gamma_R)^2}$$

- Bin: BR $\psi(4040) \rightarrow \rho \overline{\rho}$
- Bout: BR ψ(4040) → *D*^{*+}*D*^{*−}
- M_r=4039 ± 1 MeV
- Γ_r=80 ±10MeV

▲□ → ▲ □ → ▲ □ →

Cross Section

Bin: BR $\psi(4040) \rightarrow p\overline{p}$ has to be extrapolated:

$$B_{in} = B[J/\psi \to p\overline{p}] rac{\Gamma_{J/\psi}}{\Gamma_{\psi(4040)}} = 2.17 \cdot 10^{-3} rac{92.2 \, keV}{80 \, MeV} = 2.5 \cdot 10^{-6}$$

■ Bout: BR [ψ(4040) → *D**+*D**-] = 33% ¹

$$\sigma = 0.912nb$$
$$R = \frac{\sigma(p\overline{p} \to D^{*+}D^{*-})}{\sigma(p\overline{p} \to X)} = \frac{0.912 \cdot (0.677)^2 \cdot (0.0388)^2}{60mb}$$

 $R = 1.05 \cdot 10^{-11}$

¹G. Goldhaber and J.E. Wiss, Phys. Lett., 69B(4), August 1977.

Cross Section

The $\psi(4040)$ at the future PANDA experiment

・ロ・ ・ 四・ ・ 回・ ・ 回・

2

Tracking Devices

Study of the momentum distributions

The $\psi(4040)$ at the future PANDA experiment

크

Study of the momentum distributions

Two-body decay of $D^{*+/-} \rightarrow$ the heavier D⁰ carries most of the $D^{*+/-}$ boost.

The $\psi(4040)$ at the future PANDA experiment

∃ ⊳

Study of the momentum distributions

Two-body decay of $D^0 \rightarrow \theta_{max}(\pi) = 180 \ \theta_{max}(k) = 90$

Study of the momentum distributions

The $\psi(4040)$ at the future $\overline{P}ANDA$ experiment

π +soft & π -soft MC

The π^{\pm} soft are the most problematic part of the analysis. They have a really low momentum and most of them are lost because they do not hit a sufficient number of Forward-Tracker planes.

The $\psi(4040)$ at the future PANDA experiment

Analysis Strategy

- 4 candidates: K^+ , K^- , π^+ , π^-
 - Cut on the Momentum Distribution
- D⁰ / \overline{D}^0 candidates
 - Kinematic Fit → Mass Constraint
 - Cut ±100 MeV/c² around the D⁰ mass
 - Cut on the Momentum Distribution
 - Vertex Fit $\rightarrow d_{IP} < 0.2$ cm
- $D^{*+/-}$ candidates
 - Cut $\pm 100 \text{ MeV/c}^2$ around the $D^{*+/-}$ mass
- ψ (4040) candidates
 - Kinematic Fit \rightarrow 4C (Beam Energy)

PandaRoot Version: MC+Reconstruction: Rev. 20840 Analysis: Rev. 21574

K^+, K^-, π^+, π^- : Cut on the Momentum Distribution

 π^+

・ロト ・四ト ・ヨト

æ

The $\psi(4040)$ at the future $\overline{P}ANDA$ experiment

D-mesons Selection

The $\psi(4040)$ at the future $\overline{P}ANDA$ experiment

물에 귀 물에 다

Vertex Resolution of D⁰ mesons

The $\psi(4040)$ at the future PANDA experiment

<ロ> <同> <同> < 同> < 同> < 同> < □> <

3

ψ**(4040)**

The $\psi(4040)$ at the future PANDA experiment

Preliminary Estimations

$$N_{events} = \sigma \cdot L \rightarrow N_{reco} = \sigma \cdot L \cdot \epsilon_{reco}$$

$$L_{max} = 2 \cdot 10^{32} cm^{-2} s^{-1} \rightarrow L_{int} = 3.11 \cdot 10^{39} cm^{-2}$$

$$N_{events}(\psi(4040)) = 2.80 \cdot 10^{6}$$

$$N_{reco}(\psi(4040)) = 1.24 \cdot 10^{5}$$

for 6 months of data taking

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

크

Preliminary Estimations

panda _{GRID}

Background Events: 900000

Signal Events: 250000

$$N_{reco}(\psi(4040)) = 1.24 \cdot 10^5$$

Channel	σ [mbarn]	N _{events}	$\epsilon_{\it reco}$ & RP
ψ (4040)	0.9 10 ⁻³	2.80 · 10 ⁶	4.45%
2Κ4 π	0.033	$1.03 \cdot 10^{11}$	2.22·10 ⁻⁶
6π	0.32	$9.95 \cdot 10^{11}$	1.11·10 ⁻⁶
7π	1.5	$4.67 \cdot 10^{12}$	3.33·10 ⁻⁶
pp	60	$1.87 \cdot 10^{14}$	_

< 同 > < 三 > < 三 >

Conclusions

Conclusions

- *ϵ*_{ψ(4040)}=4.5%
- *M*_{ψ(4040)}=4039.99±2.27 MeV/c²
- \blacksquare More Statistics for the Background \rightarrow S/B
 - Investigate the PID perfomance
 - Cut on the opening angles between *D**+/-

-Conclusions

Thanks for the attention!!!

The $\psi(4040)$ at the future $\overline{P}ANDA$ experiment

< A

·문→ ★ 문→

- Conclusions

Backup Slides

The $\psi(4040)$ at the future PANDA experiment

<ロ> <同> <同> < 同> < 同> < 同> 、

- Conclusions

The Micro-Vertex Detector

Layout 6 Forward Disks 4 Barrels

Geometrical Constraint

- Maximum Radius: 15 cm
- Dimension along z: ± 23 cm

Readout Channels

- $\sim 10^7$ Hybrid Pixels
- $\sim 2 \cdot 10^5$ Double-Side Microstrips

- Conclusions

The Micro-Vertex Detector

Requirements

- Spatial resolution < 100 µm</p>
- Momentum resolution $\delta p/p \sim 2\%$
- Time resolution \leq 10 *ns*
- High rate capability
- No hardware trigger
- Radiation tolerance $\sim 10^{14} n_{1 MeV eq} cm^{-2}$
- Low material budget
- PID by dE/dx

The $\psi(4040)$ at the future $\overline{P}ANDA$ experiment

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Conclusions

The Straw Tube Tracker

STT Internal radius	15 cm		
STT External radius	42 cm		
Number of double layers	12		
Skew angle double layer 5	+3 ⁰		
Skew angle double layer 6	-3 ⁰		
Tube wall thickness	30 µm		
Tube internal diameter	10 mm		
Axial tube length	150 cm		
Wire diameter	20 µm		
Tube wall material	Al-Mylar		
Wire material	Au plated W/Re		
Gas mixture	Ar/CO ₂ (90/10)		
Single tube transparency	$3.7 \times 10^{-4} \text{ X/X}_{0}$		
ρ/φ plane resolution	150µm		
z resolution	1 mm		

The $\psi(4040)$ at the future PANDA experiment

日本・モン・モ