Investigation of light and heavy tetraquark candidates using lattice QCD

FAIRNESS2013 - Berlin, Germany

Marc Wagner

in collaboration with Abdou Abdel-Rehim, Constantia Alexandrou, Mattia Dalla Brida, Mario Gravina, Giannis Koutsou, Luigi Scorzato, Carsten Urbach

September 20, 2013

Introduction, motivation (1)

- The nonet of light scalar mesons $(J^P = 0^+)$
 - $\sigma \equiv f_0(500), I = 0, 400...550 \,\mathrm{MeV},$
 - $-~\kappa \equiv K_0^*(800)$, I=1/2 , $682\pm29~{\rm MeV}$,
 - $a_0(980)$, $f_0(980)$, I = 1, $980 \pm 20 \text{ MeV}$, $990 \pm 20 \text{ MeV}$

is poorly understood:

- All nine states are unexpectedly light (should rather be close to the corresponding $J^P = 1^+, 2^+$ states around $1200 \dots 1500$ MeV).
- The ordering of states is inverted compared to expectation:
 - * E.g. in a $q\bar{q}$ picture the I = 1 states $a_0(980)$, $f_0(980)$ must necessarily be formed by two u/d quarks, while the $I = 1/2 \kappa$ states are made from an s and a u/d quark; since $m_s > m_{u/d}$ one would expect $m(\kappa) > m(a_0(980)), m(f_0(980))$.

Introduction, motivation (2)

- * In a tetraquark picture the quark content could be the following: $\kappa \equiv \bar{s}l\bar{l}l$, while $a_0(980), f_0(980) \equiv \bar{s}l\bar{l}s$; this would naturally explain the observed ordering.
- Certain decays also support a tetraquark interpretation: e.g. $a_0(980)$ readily decays to $K + \bar{K}$, which indicates that besides the two light quarks required by I = 1 also an $s\bar{s}$ pair is present.
- \rightarrow Study these states by means of lattice QCD to confirm or to rule out their interpretation in terms of tetraquarks.
- Examples of heavy mesons, which are tetraquark candidates:
 - $D_{s0}^* (2317)^{\pm} (I(J^P) = 0(0^+)), D_{s1}(2460)^{\pm} (I(J^P) = 0(1^+)),$
 - charmonium states X(3872), $Z(4430)^{\pm}$, $Z(4050)^{\pm}$, $Z(4250)^{\pm}$, ...
 - ccccc (experimentally not yet observed, but predicted by theory) ...?
 [W. Heupel, G. Eichmann and C. S. Fischer, Phys. Lett. B 718, 545 (2012) [arXiv:1206.5129 [hep-ph]]]

Outline

- (1) Wilson twisted mass study of $a_0(980)$. [C. Alexandrou *et al.* [ETM Collaboration], JHEP **1304**, 137 (2013) [arXiv:1212.1418 [hep-lat]]]
- (2) Recent technical advances:
 - Lattice discretization changed, now Wilson + clover fermions (generated by the PACS-CS Collaboration).
 - [S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661 [hep-lat]]]
 - Inclusion of disconnected diagrams.
- (3) Exploring a possibly existing $\bar{c}c\bar{c}c$ tetraquark.

Lattice QCD hadron spectroscopy (1)

• Lattice QCD: discretized version of QCD,

$$S = \int d^4x \left(\sum_{\psi \in \{u,d,s,c,t,b\}} \overline{\psi} \left(\gamma_\mu \left(\partial_\mu - iA_\mu \right) + m^{(\psi)} \right) \psi + \frac{1}{2g^2} \operatorname{Tr} \left(F_{\mu\nu} F_{\mu\nu} \right) \right)$$

$$F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - i[A_\mu, A_\nu].$$

- Let O be a suitable "hadron creation operator", i.e. an operator formed by quark fields ψ and gluonic fields A_μ such that O|Ω⟩ is a state containing the hadron of interest (|Ω⟩: QCD vacuum).
- More precisely: ... an operator such that $\mathcal{O}|\Omega\rangle$ has the same quantum numbers ($J^{\mathcal{PC}}$, flavor) as the hadron of interest.
- Examples:
 - Pion creation operator: $\mathcal{O} = \int d^3x \, \bar{u}(\mathbf{x}) \gamma_5 d(\mathbf{x})$.
 - Proton creation operator: $\mathcal{O} = \int d^3x \, \epsilon^{abc} u^a(\mathbf{x}) (u^{b,T}(\mathbf{x}) C \gamma_5 d^c(\mathbf{x})).$

Lattice QCD hadron spectroscopy (2)

• Determine the mass of the ground state of the hadron of interest from the exponential behavior of the corresponding correlation function C at large Euclidean times T:

$$\begin{aligned} \mathcal{C}(t) &= \langle \Omega | \left(\mathcal{O}(t) \right)^{\dagger} \mathcal{O}(0) | \Omega \rangle &= \langle \Omega | e^{+Ht} \left(\mathcal{O}(0) \right)^{\dagger} e^{-Ht} \mathcal{O}(0) | \Omega \rangle \\ &= \sum_{n} \left| \langle n | \mathcal{O}(0) | \Omega \rangle \right|^{2} \exp \left(- (E_{n} - E_{\Omega}) t \right) \approx \quad \text{(for "} t \gg 1 \text{"} \right) \\ &\approx \left| \langle 0 | \mathcal{O}(0) | \Omega \rangle \right|^{2} \exp \left(- \underbrace{(E_{0} - E_{\Omega})}_{m(\text{hadron})} t \right). \end{aligned}$$

 Usually the exponent is determined by identifying the "plateaux-value" of a so-called effective mass:

$$m_{\text{effective}}(t) = \frac{1}{a} \ln \left(\frac{\mathcal{C}(t)}{\mathcal{C}(t+a)} \right) \approx \text{ (for "}t \gg 1"$$
$$\approx E_0 - E_\Omega = m(\text{hadron}).$$

Marc Wagner, "Investigation of light and heavy tetraquark candidates using lattice QCD", Sep

Part 1: Wilson twisted mass study of $a_0(980)$

Tetraquark creation operators

- $a_0(980)$:
 - Quantum numbers $I(J^{PC}) = 1(0^{++})$.
 - Mass 980 ± 20 MeV.
- Tetraquark creation operators:
 - Need two light quarks due to I = 1, e.g. $u\bar{d}$.
 - $a_0(980)$ decays to $K\bar{K}$... suggests an $s\bar{s}$ component.
 - $K\bar{K}$ molecule type (models a bound $K\bar{K}$ state):

$$\mathcal{O}_{a_0(980)}^{Kar{K} ext{ molecule }} = \sum_{\mathbf{x}} \Big(ar{s}(\mathbf{x}) \gamma_5 u(\mathbf{x}) \Big) \Big(ar{d}(\mathbf{x}) \gamma_5 s(\mathbf{x}) \Big).$$

- Diquark type (models a bound diquark-antidiquark):

$$\mathcal{O}_{a_0(980)}^{\mathsf{diquark}} = \sum_{\mathbf{x}} \Big(\epsilon^{abc} \bar{s}^b(\mathbf{x}) C \gamma_5 \bar{d}^{c,T}(\mathbf{x}) \Big) \Big(\epsilon^{ade} u^{d,T}(\mathbf{x}) C \gamma_5 s^e(\mathbf{x}) \Big).$$

Wilson twisted mass lattice setup

- Gauge link configurations generated by the ETM Collaboration. [R. Baron *et al.*, JHEP 1006, 111 (2010) [arXiv:1004.5284 [hep-lat]]]
- 2+1+1 dynamical Wilson twisted mass quark flavors, i.e. *u*, *d*, *s* and *c* sea quarks (twisted mass lattice QCD isospin and parity are slightly broken).
- Various light u/d quark masses corresponding pion masses $m_{\pi} \approx 280 \dots 460 \text{ MeV}.$
- Singly disconnected contributions neglected, i.e. no *s* quark propagation within the same timeslice ("no quark antiquark pair creation/annihilation").

Numerical results $a_0(980)$ (1)

• Effective mass, molecule type operator:

$$\mathcal{O}_{a_0(980)}^{Kar{K} ext{ molecule }} = \sum_{\mathbf{x}} \Big(ar{s}(\mathbf{x}) \gamma_5 u(\mathbf{x}) \Big) \Big(ar{d}(\mathbf{x}) \gamma_5 s(\mathbf{x}) \Big).$$

- The effective mass plateau indicates a state, which is roughly consistent with the experimentally measured $a_0(980)$ mass 980 ± 20 MeV.
- Conclusion: $a_0(980)$ is a tetraquark state of $K\bar{K}$ molecule type ...?

Marc Wagner, "Investigation of light and heavy tetraquark candidates using lattice QCD", Sep 20, 2013

Numerical results $a_0(980)$ (2)

• Effective mass, diquark type operator:

$$\mathcal{O}_{a_{0}(980)}^{\mathsf{diquark}} = \sum_{\mathbf{x}} \left(\epsilon^{abc} \bar{s}^{b}(\mathbf{x}) C \gamma_{5} \bar{d}^{c,T}(\mathbf{x}) \right) \left(\epsilon^{ade} u^{d,T}(\mathbf{x}) C \gamma_{5} s^{e}(\mathbf{x}) \right).$$

- The effective mass plateaux indicates a state, which is roughly consistent with the experimentally measured $a_0(980)$ mass 980 ± 20 MeV.
- Conclusion: $a_0(980)$ is a tetraquark state of diquark type ...? Or a mixture of $K\bar{K}$ molecule and a diquark-antidiquark pair?

Numerical results $a_0(980)$ (3)

• Study both operators at the same time, extract the two lowest energy eigenstates by diagonalizing a 2 × 2 correlation matrix ("generalized eigenvalue problem"):

$$\mathcal{O}_{a_{0}(980)}^{K\bar{K} \text{ molecule}} = \sum_{\mathbf{x}} \left(\bar{s}(\mathbf{x})\gamma_{5}u(\mathbf{x}) \right) \left(\bar{d}(\mathbf{x})\gamma_{5}s(\mathbf{x}) \right)$$
$$\mathcal{O}_{a_{0}(980)}^{\mathsf{diquark}} = \sum_{\mathbf{x}} \left(\epsilon^{abc} \bar{s}^{b}(\mathbf{x})C\gamma_{5} \bar{d}^{c,T}(\mathbf{x}) \right) \left(\epsilon^{ade} u^{d,T}(\mathbf{x})C\gamma_{5}s^{e}(\mathbf{x}) \right).$$

• Now two orthogonal states roughly consistent with the experimentally measured $a_0(980)$ mass 980 ± 20 MeV ...?

Marc Wagner, "Investigation of light and heavy tetraquark candidates

Two-particle creation operators (1)

• Explanation: there are two-particle states, which have the same quantum numbers as $a_0(980)$, $I(J^{PC}) = 1(0^{++})$,

$$-K + \overline{K} (m(K) \approx 500 \text{ MeV}),$$

 $-\eta_s + \pi \ (m(\eta_s \equiv \bar{s}\gamma_5 s) \approx 700 \text{ MeV}, \ m(\pi) \approx 300 \text{ MeV}$ in our lattice setup),

which are both around the expected $a_0(980)$ mass 980 ± 20 MeV.

- What we have seen in the previous plots might actually be two-particle states (our operators are of tetraquark type, but they nevertheless generate overlap [possibly small, but certainly not vanishing] to two-particle states).

Two-particle creation operators (2)

- Two-particle operators:
 - $\begin{array}{ll} \text{ Two-particle } K + \bar{K} \text{ type:} \\ \mathcal{O}_{a_0(980)}^{K + \bar{K} \text{ two-particle }} &= \Big(\sum_{\mathbf{x}} \bar{s}(\mathbf{x}) \gamma_5 u(\mathbf{x}) \Big) \Big(\sum_{\mathbf{y}} \bar{d}(\mathbf{y}) \gamma_5 s(\mathbf{y}) \Big). \end{array}$
 - Two-particle $\eta_s + \pi$ type:

$$\mathcal{O}_{a_0(980)}^{\eta_s+\pi ext{ two-particle }} = \Big(\sum_{\mathbf{x}} ar{s}(\mathbf{x}) \gamma_5 s(\mathbf{x}) \Big) \Big(\sum_{\mathbf{y}} ar{d}(\mathbf{y}) \gamma_5 u(\mathbf{y}) \Big).$$

Numerical results $a_0(980)$ (4)

- Study all four operators ($K\bar{K}$ molecule, diquark, $K + \bar{K}$ two-particle, $\eta_s + \pi$ two-particle) at the same time, extract the four lowest energy eigenstates by diagonalizing a 4×4 correlation matrix (left plot).
 - Still only two low-lying states around 980 ± 20 MeV, the 2nd and 3rd excitation are ≈750 MeV heavier.
 - The signal of the low-lying states is of much better quality than before (when we only considered tetraquark operators)
 - ightarrow suggests that the observed low-lying states have much better overlap to the two-particle operators and are most likely of two-particle type.

Numerical results $a_0(980)$ (5)

- When determining low-lying eigenstates from a correlation matrix, one does not only obtain their mass, but also information about their operator content, i.e. which percentage of which operator is present in an extracted state:
 - \rightarrow The ground state is a $\eta_s + \pi$ state ($\gtrsim 95\%$ two-particle $\eta_s + \pi$ content).
 - \rightarrow The first excitation is a $K+\bar{K}$ state ($\gtrsim\!95\%$ two-particle $K+\bar{K}$ content).

Numerical results $a_0(980)$ (6)

- What about the 2nd and 3rd excitation? ... Are these tetraquark states? ... What is their nature?
- Two-particle states with one relative quantum of momentum (one particle has momentum $+p_{\min} = +2\pi/L$ the other $-p_{\min}$) also have quantum numbers $I(J^{PC}) = 1(0^{++})$; their masses can easily be estimated:
 - $p_{\min} = 2\pi/L \approx 715 \text{ MeV}$ (the results presented correspond to the small lattice with spatial extension L = 1.73 fm);
 - $m(K(+p_{\min}) + \bar{K}(-p_{\min})) \approx 2\sqrt{m(K)^2 + p_{\min}^2} \approx 1750 \text{ MeV};$ $- m(\eta(+p_{\min}) + \pi(-p_{\min})) \approx \sqrt{m(\eta)^2 + p_{\min}^2} + \sqrt{m(\pi)^2 + p_{\min}^2} \approx 1780 \text{ MeV};$

these estimated mass values are consistent with the observed mass values of the 2nd and 3rd excitation

 \rightarrow suggests to interpret these states as two-particle states.

Marc Wagner, "Investigation of light and heavy tetraquark candidates

Numerical results $a_0(980)$ (7)

• Summary:

- In the $a_0(980)$ sector (quantum numbers $I(J^{PC}) = 1(0^{++})$) we do not observe any low-lying (mass $\leq 1750 \text{ MeV}$) tetraquark state, even though we employed operators of tetraquark structure ($K\bar{K}$ molecule, diquark).
- The experimentally measured mass for $a_0(980)$ is 980 ± 20 MeV.
- Conclusion: $a_0(980)$ does not seem to be a strongly bound tetraquark state (either of molecule or of diquark type) ... maybe an ordinary quark-antiquark state or a rather unstable resonance.

Part 2: Recent technical advances

Wilson + clover lattice setup

- Gauge link configurations generated by the PACS-CS Collaboration.
 [S. Aoki et al. [PACS-CS Collaboration], Phys. Rev. D 79, 034503 (2009) [arXiv:0807.1661 [hep-lat]]]
- 2+1 dynamical Wilson + clover quark flavors, i.e. u, d and s sea quarks.
 → In contrast to twisted mass parity and isospin are exact symmetries, i.e. no pion and kaon mass splitting, easy separation of P = +, states, ...
- Light u/d quark masses corresponding to pion masses $m_{\pi} \approx 150 \text{ MeV}$ and $m_{\pi} \approx 300 \text{ MeV}$.
 - \rightarrow Computations close to physically light u/d quark masses possible.
- Singly disconnected contributions included.
 - \rightarrow s quark propagation within the same timeslice ("quark antiquark pair creation/annihilation taken into account").

Singly disconnected diagrams (1)

- In our previous Wilson twisted mass study of $a_0(980)$ we neglected singly disconnected contributions:
 - \rightarrow We could not consider a $q\bar{q}$ operator,

$$\mathcal{O}^{qar{q}}_{a_0(980)} \;\;=\;\; \sum_{\mathbf{x}} \Big(ar{d}(\mathbf{x}) u(\mathbf{x}) \Big),$$

because cross correlations between this operator and any of the four-quark operators $\mathcal{O}_{a_0(980)}^{K\bar{K}}$ molecule, $\mathcal{O}_{a_0(980)}^{\text{diquark}}$, $\mathcal{O}_{a_0(980)}^{K+\bar{K}}$ two-particle or $\mathcal{O}_{a_0(980)}^{\eta_s+\pi}$ two-particle correspond to singly disconnected diagrams.

 \rightarrow Also correlations between the four-quark operators include singly disconnected diagrams; therefore, we introduced a source of systematic error, which is difficult to estimate or to control.

Singly disconnected diagrams (2)

- Technical aspects of computing singly disconnected diagrams:
 - Blue: point-to-all propagators applicable.
 - Red: due to $\sum_{\mathbf{x}}$, timeslice-to-all propagators needed.
 - Timeslice-to-all propagators can be estimated stochastically.
 - Using several stochastic timeslice-to-all propagators results in a poor signal-to-noise ratio.
 - \rightarrow Combine three point-to-all (blue) and one stochastic timeslice-to-all (red) propagator.

Singly disconnected diagrams (3)

- Effective masses from a 2×2 correlation matrix $(\mathcal{O}_{a_0(980)}^{q\bar{q}})$ and $\mathcal{O}_{a_0(980)}^{K\bar{K}}$ molecule):
 - Lowest (two) energy level(s) consistent with K + K, $\eta + \pi$ and a possibly existing additional $a_0(980)$ state.
 - For physically interesting statements we also need to include $\mathcal{O}_{a_0(980)}^{\text{diquark}}$, $\mathcal{O}_{a_0(980)}^{K+\bar{K} \text{ two-particle}}$ and $\mathcal{O}_{a_0(980)}^{\eta_s+\pi \text{ two-particle}}$ (work in progress).

Outlook

- Enlarge correlation matrices such that
 - $-~q\bar{q}$ operators,
 - tetraquark operators (mesonic molecules, diquark-antidiquark pairs),
 - two-meson operators

are included.

- Perform computations at pion mass $m_{\pi} \approx 150 \text{ MeV}$.
- Address various physical questions/systems (tetraquark candidates with different flavor structure, search for additional bound states, ...).

Part 3: Exploring a possibly existing cccctetraquark

$\bar{c}c\bar{c}c$ tetraquark ...? (1)

- Recently a $\bar{c}c\bar{c}c$ tetraquark has been predicted
 - using a coupled system of covariant Bethe-Salpeter equations,
 - mass $m(\bar{c}c\bar{c}c)=(5.3\pm0.5)\,{\rm GeV}$,
 - predominantly of mesonic molecule type (two η_c mesons),
 - rather strongly bound ($2 \times m(\eta_c) = 6.0 \text{ GeV}$), binding energy $\Delta E = m(\bar{c}c\bar{c}c) 2 \times m(\eta_c) \approx -(0.7 \pm 0.5) \text{ GeV}.$

[W. Heupel, G. Eichmann and C. S. Fischer, Phys. Lett. B 718, 545 (2012) [arXiv:1206.5129 [hep-ph]]]

- Should be within experimental reach (PANDA experiment).
- \rightarrow Investigate the existence of this $\bar{c}c\bar{c}c$ state using lattice QCD.

$\bar{c}c\bar{c}c$ tetraquark ...? (2)

- Use the same techniques and setup as discussed for the $a_0(980)$ meson.
- First attempt:
 - Molecule type $\bar{c}c\bar{c}c$ creation operator (models a bound $\eta_c\eta_c$ state):

$$\mathcal{O}_{\bar{c}c\bar{c}c}^{\eta_c\eta_c \text{ molecule}} = \sum_{\mathbf{x}} \Big(\bar{c}(\mathbf{x})\gamma_5 c(\mathbf{x})\Big) \Big(\bar{c}(\mathbf{x})\gamma_5 c(\mathbf{x})\Big).$$

- Inconclusive results:
 - * Neither an indication for a $\bar{c}c\bar{c}c$ state significantly below $2 \times m(\eta_c)$...
 - $* \dots$ nor can the existence of such a state be ruled out

(the effective mass still decreases at large temporal separations t, which signals a trial state $\mathcal{O}_{\bar{c}c\bar{c}c}^{\eta_c\eta_c} \stackrel{\text{molecule}}{=} |\Omega\rangle$, which has a poor ground state overlap; the ground state could be $|\eta_c + \eta_c\rangle$ or $|\bar{c}c\bar{c}c\rangle$ of different structure).

Marc Wagner, "Investigation of light and heavy tetraquark candidates using lattice C

$\bar{c}c\bar{c}c$ tetraquark ...? (3)

- The molecule type $\bar{c}c\bar{c}c$ creation operator used generates a trial state with the two η_c mesons essentially on top of each other.
- In a possibly existing $\bar{c}c\bar{c}c$ tetraquark state the two η_c mesons could be quite far separated.
- We currently explore an improved molecule type $\bar{c}c\bar{c}c$ creation operator:

$$\mathcal{O}_{\bar{c}c\bar{c}c}^{\eta_c\eta_c \text{ molecule}} = \sum_{\mathbf{x}} \left(\bar{c}(\mathbf{x})\gamma_5 c(\mathbf{x}) \right) \sum_{\mathbf{n}=\pm \mathbf{e}_x, \pm \mathbf{e}_y, \pm \mathbf{e}_z} \left(\bar{c}(\mathbf{x}+r\mathbf{n})\gamma_5 c(\mathbf{x}+r\mathbf{n}) \right)$$

(r models the size of the mesonic molecule).

• Computations are in progress ...