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The Compressed Baryonic Matter (CBM) experiment

e Beam energies in the range 2 — 35 A GeV (S1S100/300).

e Reaches highest net-baryon densities = explores new regions in the
QCD phase diagram, complementary to the BES program at RHIC.
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e Highest beam intensities = ability to measure rare probes with high
statistics.



The CBM experiment - in this (theory) talk

Charm production and propagation of open charm.
Electromagnetic probes: dileptons.
The equation of state at high baryonic densities.

The phase structure and phase transition of QCD at high
baryonic densities.



Charm production at FAIR energies

e cc-quark pairs are predominantly produced in the initial hard
nucleon-nucleon scatterings.

e Production and propagation of charm (and bottom) quarks have
extensively been studied at top-RHIC/LHC energies.

e Production cross sections fall off rapidly towards lower beam energies.
¢ In the energy range for CBM, charm production occurs at the threshold.
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Charm propagation in the medium at FAIR energies
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Initial spectra from
HSD-parametrization.

e Langevin propagation +
UrQMD hybrid approach.

e Transport coefficients from

pQCD+resonance scattering
(Rapp, Hees, PRC71 (2005))
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= Clear differences between D and D-mesons expected in the resonance
scattering approach!



D-meson propagation in the medium

e Hadronic interactions (D-hadron) might become more important!

o Effective Lagrangian consistent with chiral and heavy-quark spin

symmetries.

e Included interactions: D - mesons = {, K,n} and D-

baryons = {N, A}.

= Due to additional D-baryon con-
tributions to the drag- and diffusion
coefficient, the relaxation time is re-

duced at FAIR energies!
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(L. Tolos and J. M. Torres-Rincon, arXiv:1306.5426)

Talks by D. Cabrera and J. M. Torres-Rincon on Wednesday!



Electromagnetic probes

Photons -y and dileptons ¢+ /...

. do not interact with the medium via the strong interaction = penetrating
probes.

. are produced during all stages of the collision:

70,7 Dalitz decays
plo

— from initial hard scatterings
(Drell-Yan, high mass region).

— from the thermalized medium -
hadronic or partonic.

(Fig. by A. Drees)
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— from hadronic decays in the late
phase — cocktail.
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. are measured as time integrals over the collision history.



Electromagnetic probes

o Adilepton is a timelike, virtual photon M2. = M2, > 0!

e Real photon (M$ = 01) emission and dilepton emission are given by the
same electromagnetic current-current correlation function

[y = =i [ d*xexpliq- x)([/* (). /" ()7,

in different kinematic regimes:

dN +o— 042
d4xed§q = 3q27.[3g"‘/<x L/I’;(q”qz:M;einB(qO)
dN'y _ Kem VVC‘HF”’

q°d4xd3q 529 ret(q)|q0:‘a|n8(q0)

e In the vacuum the em spectral function is dominated by the p, w and ¢
resonances at low mass and a quark-antiquark continuum at high mass.



Dileptons and chiral symmetry

e The QCD Lagrangian is symmetric under chiral transformations (up to
the small current quark masses).

o Under axial transformations ¢ — exp (—i'y5§@) P:
a pion-like state rotates into a sigma-like state: # — 7 + Oc
a rho-like state rotates into a a;-like state: § — g+ © x 3

= naive assumption: chiral partners are degenerate, they should have the
same eigenvalues, e. g. the same masses

BUT...



Dileptons and chiral symmetry

... chiral symmetry is spontaneously broken in the vacuum
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Expectation: chirally restored phase in hot and dense matter.



Dileptons and chiral symmetry

There are different possible scenarios for in-medium modifictions of the
spectral functions:
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Problem: only the vector part of the spectral function is accessible via
dileptons.

(CBM physics book)



Chiral mixing
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e In low-density expansion and to leading-order in T:

Iy,a(q) = (1 —€)I1Y 5(q) + €I} v(q)

. 2
with € = 67-7 (M. Dey et al, PLB252, 1990)
s

e Further calculations of medium-modified spectral functions require
models for the...



In-medium correlator

Coupling of p to ~

Dressing of p

Dressing of intermediate 7




Overview (by far not exhaustive)

e QCD and Weinberg sum rules = can only give constraints on spectral
functions from models: shift and/or width (evpoidetai. ..)

Talk by Thomas Buchheim, this afternoon!
e Mean-field dynamics (rownand rRo.) = dropping mass scenario

e Hadronic many-body theory (Ko et al, Chanfray et al, Hermann et al, Rapp et al. ...) =
in-medium broadening

— mr-interactions and baryonic excitations
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Hadronic many-body theory
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in-medium propagator:

Fig. by H. Hees
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Hadronic or partonic?
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e Parton-hadron duality of rates o< exp(—E, / T).
e Could the dilepton v» distinguish between multipion and qg processes?



Correlated DD-decay into lepton-pairs

Correlated DD-meson decay into dileptons is the main background for the
thermal radiation from the QGP/hadronic medium.

e Softer spectra at lower
energies.

e Dependence on the diffusion
coefficient.

o Difference to experimental
data is a measure for thermal
radiation.
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(T. Lang et al, arxiv:1305.7377)



Convolution with the medium evolution

As with (probably) all observables:

Quantitative predictions for dilepton yields in heavy-ion collisions depends on
the evolution of the medium!

Talks during this conference:
e Dileptons from UrQMD — Stephan Endres, Saturday
e UrQMD plus fluid dynamics — Jussi Auvinen, Thursday
e UrQMD plus viscous fluid dynamics — lurii Karpenko, Thursday



What is fluid dynamics?

Two time scales:

o fast processes = local equilibration
e slow processes = change of conserved charges (energy,

momentum, charge)

General dynamics: 9, T# = 0 and 9, N* = 0.
Properties of the system enter via the equation of state and transport

coefficients.

The equation of state at
up = 0 can be calculated on
the lattice.

Little is known about the
equation of state at finite
(high) baryonic densities...
Talk by Sylvain Mogliacci, this
morning!
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Equation of state - critical point

ATcrit

e Construct an eos with CP from the T lake, critical region

universality class of the 3d Ising model. A
e Map the temperature and the external

magnetic field (r, h) onto the (T, u)-plane

=> critical part of the entropy density S..

e Match with nonsingular entropy density
from QGP and the hadronic phase:
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Equation of state - effective models

e Equations of state can be obtained from effective model Lagrangians.

e Hadronic SU(3) non-linear sigma model including quark degrees of
freedom yields a realistic structure of the phase diagram and
phenomenologically acceptable results for saturated nuclear matter.

V. Dexheimer, S. Schramm, PRC81 (2010)

e The influence of the eos on the directed flow or mean transverse

momentum spectra is negligible.
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Approaches to the QCD phase diagram

e QCD calculations in the nonperturbative regime:

Talk by Gergely Endrodi, Saturday morning!

LQCD  Eesstsass, co 110s corn Dyson-Schwinger equations
C. Fischer, J. Luecker, PLB718 (2013)
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Fluctuations at the critical point

o In thermal systems the correlation length
¢ diverges at the CP.

e Coupling of the order parameter to pions
gorrt and protons Gopp = fluctuations
in multiplicity distributions
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M. Stephanov, K. Rajagopal, E. Shuryak, PRL 81 (1998), PRD 60 (1999)
e Higher cumulants are more sensitive to

the CP

skewness: ((ON)3) o &45

kurtosis: ((6N)*) — 3((6N)?)2 &7

M. Stephanov, PLB 102 (2009), PRL 107 (2011)
e Experimental difficulties, baryon number

conservation

MN et al. EPJ C72 (2012)
A. Bzdak, V. Koch, PRC86 (2012), PRC87 (2013)

NA49 collaboration J. Phys. G 35 (2008)
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Fluctuations at the critical point

e Long relaxation times near a critical point
= the system is driven out of equilibrium (critical slowing down)!

e Phenomenological equation:
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B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D. Son, M. Stephanov, PRD 70 (2004); M. Asakawa, C. Nonaka, Nucl. Phys. A774 (2006)



Fluctuations at the phase transition

e Large nonstatistical fluctuations in nonequilibrium situations of single

events.

CEP

e Instability of slow modes in the ol 2
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Heavy-ion collisions are

inhomogeneous
finite in space and time
and highly dynamical.

Can nonequilibrium effects become strong enough to develop signals of
the first-order phase transition?

Do enhanced equilibrium fluctuations at the critical point survive the
dynamics?

Goal:
Combine the fluid dynamical description of heavy-ion collisions with
fluctuation phenomena at the phase transition!

Explicit propagation of the order parameter(s) — NxFD
Fluid dynamical fluctuations



Nonequilibrium chiral fluid dynamics - NxFD

Langevin equation for the sigma field: damping and noise from the
interaction with the quarks (quark-meson model)

ou
0,0'o + 5o T9pst o =¢

For PQM: phenomenological dynamics for the Polyakov-loop

Fluid dynamical expansion of the quark fluid = heat bath, including
energy-momentum exchange

T =8 = -9, T}

= includes a stochastic source term!
Nonequilibrium equation of state p = p(e, o)

Selfconsistent approach within the 2P| effective action!

MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011); MN, S. Leupold, M. Bleicher, PLB 711 (2012);
MN, C. Herold, S. Leupold, I. Mishustin, M. Bleicher, JPG40 (2013); C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013)

Talks by Alex Meistrenko, Christoph Herold, after the coffee break!



Relativistic theory of fluid dynamical fluctuations

e Conventional fluid dynamics propagates thermal average.

o If there was no noise = (TH T*F) = 0, give viscosity via the
Kubo-formalism.

e Fast processes lead to local equilibration AND to noise.

= stochastic fluid dynamics by Landau, 1957
= extention to relativistic fluid dynamics in the QCD:

T =0  9uNg=0

TH — Te”qv +ATE on average

visc
TH = Tl + ATE + 8"

visc

(S") = 0: noise

J. Kapusta, B. Mueller, M. Stephanov PRC85 (2012)



Relativistic theory of fluid dynamical fluctuations

e Magnitude of the noise correlator from the fluctuation-dissipation
theorem, it matches noise and dissipation (viscosity!)

(8 (x)8"(y)) = 2T[n(AM* A" + AFPAY)
+ (0 —2/3) A A6} (x — )
o Noise is local but the fluid dynamical modes transport correlations over

macroscopic distances.

e Example: boost-invariant Bjorken expansion:
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e Colored noise in second order viscous fluid dynamics in

K. Murase, T. Hirano, arxiv:1304.3243



Fluid dynamical fluctuations at a critical point

e Focus on thermal conductivity and set viscosities to zero.
e Use a background equation of state with a CP

P=AyT* + Asp3T? + Aoy — CT?> — B

J. Kapusta PRC81 (2010)

e Example: boost-invariant Bjorken expansion:
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e On the flyby near the CP the thermal conductivity is enhanced =
enhancement of the rapidity correlator of protons.

J. Kapusta, J. Torres-Rincon PRC86 (2012)



Summary

At CBM...
e The phase diagram can be studied at high net-baryon densities:

e Fluctuation phenomena at the critical point.
e Spinodal instabilities in the region of the first-order phase transition.
e More exotic phases? Color superconductor? Quarkyonic matter?

e What is the equation of state at high net-baryon densities?

e Study rare probes in dense nuclear matter:

¢ Electromagnetic probes, dileptons and direct photons — chiral
symmetry restoration? Hadronic or partonic sources?

e Charm production and dynamics: what are the underlying
production and interaction mechanisms?



