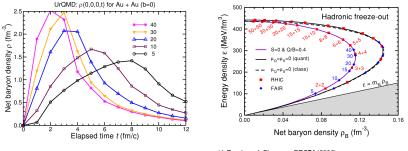
Compressed Baryonic Matter experiment at FAIR: Theory overview

Marlene Nahrgang

Duke University & Frankfurt Institute for Advanced Studies (FIAS)

FAIRNESS 2013

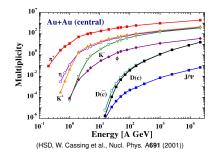

Berlin, September 16th, 2013

The Compressed Baryonic Matter (CBM) experiment

- Beam energies in the range 2 35 A GeV (SIS100/300).
- Reaches highest net-baryon densities ⇒ explores new regions in the QCD phase diagram, complementary to the BES program at RHIC.

(I. Arsene et al PRC75 (2007)

(J. Randrup, J. Cleymans PRC74 (2006)


 Highest beam intensities ⇒ ability to measure rare probes with high statistics.

The CBM experiment - in this (theory) talk

- Charm production and propagation of open charm.
- Electromagnetic probes: dileptons.
- The equation of state at high baryonic densities.
- The phase structure and phase transition of QCD at high baryonic densities.

Charm production at FAIR energies

- cc-quark pairs are predominantly produced in the initial hard nucleon-nucleon scatterings.
- Production and propagation of charm (and bottom) quarks have extensively been studied at top-RHIC/LHC energies.
- Production cross sections fall off rapidly towards lower beam energies.
- In the energy range for CBM, charm production occurs at the threshold.

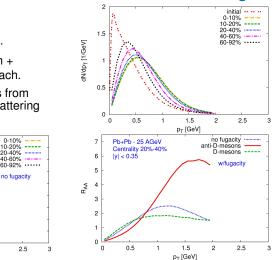
Charm propagation in the medium at FAIR energies

- Initial spectra from HSD-parametrization.
- Langevin propagation + UrQMD hybrid approach.
- Transport coefficients from pQCD+resonance scattering (Rapp, Hees, PRC71 (2005))

.....

1.5

p_T [GeV]


10-20%

20-40%

40-60%

2 2.5

no fugacity

0.5

D-Mesons

|v| < 0.35

PbPb - 25 AGeV

4.5

4

3.5

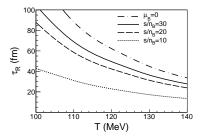
2.5 BÅÅ

2

1.5

1

0.5 0

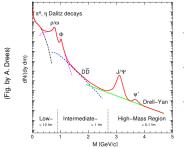

з

 \Rightarrow Clear differences between D and \overline{D} -mesons expected in the resonance scattering approach!

D-meson propagation in the medium

- Hadronic interactions (D-hadron) might become more important!
- Effective Lagrangian consistent with chiral and heavy-quark spin symmetries.
- Included interactions: D mesons = {π, K, η} and D-baryons = {N, Δ}.

 \Rightarrow Due to additional *D*-baryon contributions to the drag- and diffusion coefficient, the relaxation time is reduced at FAIR energies!


(L. Tolos and J. M. Torres-Rincon, arXiv:1306.5426)

Talks by D. Cabrera and J. M. Torres-Rincon on Wednesday!

Electromagnetic probes

```
Photons \gamma and dileptons \ell^+ \ell^-...
```

- ... do not interact with the medium via the strong interaction \Rightarrow penetrating probes.
- ... are produced during all stages of the collision:

- \rightarrow from initial hard scatterings (Drell-Yan, high mass region).
- → from the thermalized medium hadronic or partonic.
- \rightarrow from hadronic decays in the late phase \rightarrow cocktail.

... are measured as time integrals over the collision history.

Electromagnetic probes

A dilepton is a timelike, virtual photon M²_{γ*} = M²_{e⁺e⁻} > 0!

 Real photon (M²_γ = 0⁺) emission and dilepton emission are given by the same electromagnetic current-current correlation function

$$\Pi_{\rm ret}^{\mu\nu} = -i \int \mathrm{d}^4 x \exp(i q \cdot x) \langle [j^{\mu}(x), j^{\nu}(0)] \rangle_{\mathcal{T},\mu}$$

in different kinematic regimes:

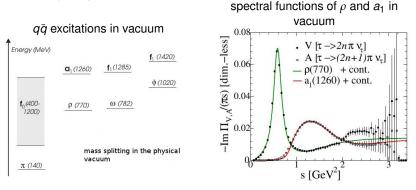
$$\frac{\mathrm{d}N_{e^+e^-}}{\mathrm{d}^4 x \mathrm{d}^4 q} = -\frac{\alpha_{\mathrm{em}}^2}{3q^2 \pi^3} g^{\mu\nu} \Im \Pi_{\mathrm{ret}}^{\mu\nu}(q) \Big|_{q^2 = M_{e^+e^-}^2} n_B(q_0)$$
$$q_0 \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}^4 x \mathrm{d}^3 q} = \frac{\alpha_{\mathrm{em}}}{2\pi^2} g^{\mu\nu} \Im \Pi_{\mathrm{ret}}^{\mu\nu}(q) \Big|_{q_0 = |\vec{q}|} n_B(q_0)$$

• In the vacuum the em spectral function is dominated by the ρ , ω and ϕ resonances at low mass and a quark-antiquark continuum at high mass.

Dileptons and chiral symmetry

- The QCD Lagrangian is symmetric under chiral transformations (up to the small current quark masses).
- Under axial transformations $\psi \to \exp\left(-i\gamma_5 \frac{\vec{\tau}}{2}\vec{\Theta}\right)\psi$:

a pion-like state rotates into a sigma-like state: $\vec{\pi} \to \vec{\pi} + \vec{\Theta}\sigma$ a rho-like state rotates into a a_1 -like state: $\vec{\rho} \to \vec{\rho} + \vec{\Theta} \times \vec{a}_1$

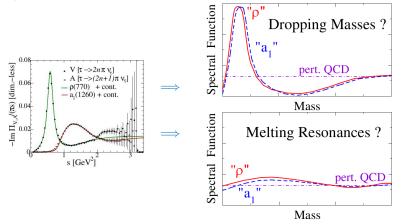

⇒ naive assumption: chiral partners are degenerate, they should have the same eigenvalues, e. g. the same masses

BUT...

Dileptons and chiral symmetry

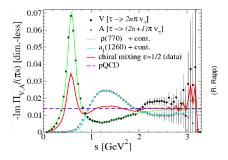
... chiral symmetry is spontaneously broken in the vacuum

 \Rightarrow mass splitting



(ALEPH data from τ decay)

Expectation: chirally restored phase in hot and dense matter.


Dileptons and chiral symmetry

There are different possible scenarios for in-medium modifictions of the spectral functions:

Problem: only the vector part of the spectral function is accessible via dileptons.

Chiral mixing

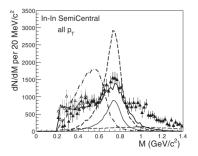

• In low-density expansion and to leading-order in T:

$$\Pi_{\mathrm{V,A}}(\boldsymbol{q}) = (1-\epsilon)\Pi_{\mathrm{V,A}}^{\mathbf{0}}(\boldsymbol{q}) + \epsilon \Pi_{\mathrm{A,V}}^{\mathbf{0}}(\boldsymbol{q})$$

with $\epsilon = rac{T^2}{6f_\pi^2}$. (M. Dey et al, PLB**252**, 1990)

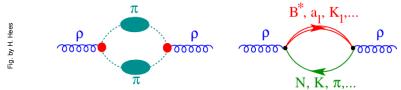
 Further calculations of medium-modified spectral functions require models for the...

In-medium correlator


Overview (by far not exhaustive)

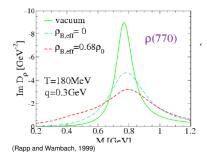
- QCD and Weinberg sum rules ⇒ can only give constraints on spectral functions from models: shift and/or width (Leupold et al. ...)
 Talk by Thomas Buchheim, this afternoon!
- Mean-field dynamics (Brown and Rho...) ⇒ dropping mass scenario
- Hadronic many-body theory (Ko et al, Chanfray et al, Hermann et al, Rapp et al. ...) \Rightarrow in-medium broadening

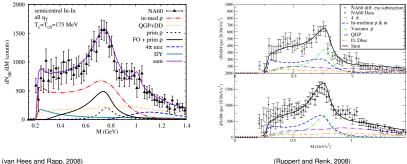
 $ightarrow \pi\pi$ -interactions and baryonic excitations


NA60 data of $\mu^+\mu^-$ seems to favor the broadening scenario:

dashed: vacuum dashed-dotted: dropping mass solid: in-medium broadening

(NA60 collaboration, PRL 96, 2006)

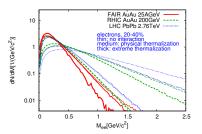

Hadronic many-body theory


in-medium propagator:

$$D_{\rho}(M, q; T, \mu_B) = (M^2 - (m_{\rho}^0)^2 - \Sigma_{\rho\pi\pi} - \Sigma_{\rho B} - \Sigma_{\rho M})^{-1}$$

- Baryon contributions to the broadening are large.
- Baryon effects are important even at n_{B-B} = 0.
- Sensitive to $n_B + n_{\bar{B}}$ due to CP-invariance of the strong interaction ($\rho - N = \rho - \bar{N}$).

Hadronic or partonic?


(Ruppert and Renk, 2008)

- Parton-hadron duality of rates $\propto \exp(-E_{\gamma}/T)$.
- Could the dilepton v_2 distinguish between multipion and $q\bar{q}$ processes?

Correlated DD-decay into lepton-pairs

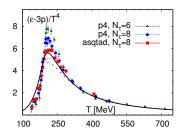
Correlated $D\bar{D}$ -meson decay into dileptons is the main background for the thermal radiation from the QGP/hadronic medium.

- Softer spectra at lower energies.
- Dependence on the diffusion coefficient.
- Difference to experimental data is a measure for thermal radiation.

(T. Lang et al, arxiv:1305.7377)

Convolution with the medium evolution

As with (probably) all observables:


Quantitative predictions for dilepton yields in heavy-ion collisions depends on the evolution of the medium!

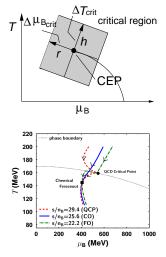
Talks during this conference:

- Dileptons from UrQMD \rightarrow Stephan Endres, Saturday
- UrQMD plus fluid dynamics \rightarrow Jussi Auvinen, Thursday
- UrQMD plus viscous fluid dynamics \rightarrow Iurii Karpenko, Thursday

What is fluid dynamics?

- Two time scales:
 - fast processes \Rightarrow local equilibration
 - slow processes ⇒ change of conserved charges (energy, momentum, charge)
- General dynamics: $\partial_{\mu}T^{\mu\nu} = 0$ and $\partial_{\mu}N^{\mu} = 0$.
- Properties of the system enter via the equation of state and transport coefficients.
- The equation of state at $\mu_B = 0$ can be calculated on the lattice.
- Little is known about the equation of state at finite (high) baryonic densities...
 Talk by Sylvain Mogliacci, this morning!

P. Huovinen, P. Petreczky, NPA837 (2010)

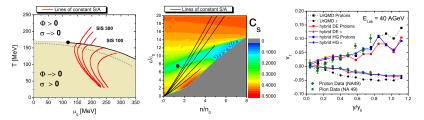

Equation of state - critical point

- Construct an eos with CP from the universality class of the 3d Ising model.
- Map the temperature and the external magnetic field (*r*, *h*) onto the (*T*, μ)-plane ⇒ critical part of the entropy density *S*_c.
- Match with nonsingular entropy density from QGP and the hadronic phase:

$$\begin{split} s &= 1/2(1-\tanh S_c)s_H \\ &+ 1/2(1+\tanh S_c)s_{QGP} \end{split}$$

 Focussing of trajectories ⇒ Different behavior of p̄/p yields.

not confirmed in similar studies, e.g. M. Bluhm, B. Kampfer PoS CPOD2006 (2006)


C. Nonaka, M. Asakawa PRC71 (2005); M. Asakawa, S. Bass, B. Mueller, C. Nonaka PRL101 (2008)

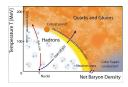
Equation of state - effective models

- Equations of state can be obtained from effective model Lagrangians.
- Hadronic SU(3) non-linear sigma model including quark degrees of freedom yields a realistic structure of the phase diagram and phenomenologically acceptable results for saturated nuclear matter.

V. Dexheimer, S. Schramm, PRC81 (2010)

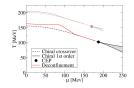
• The influence of the eos on the directed flow or mean transverse momentum spectra is negligible.

J. Steinheimer, V. Dexheimer, H. Petersen, M. Bleicher, S. Schramm, H. Stoecker, PRC81 (2010)


Approaches to the QCD phase diagram

 QCD calculations in the nonperturbative regime: Talk by Gergely Endrodi, Saturday morning!

LQCD JHEP 0203 (2002), JHEP 1104 (2011) T¾(µ) Temperature (MeV) 150 $T^{pv}(\mu)$ 100 50 200 400 Barvonic chemical potential (MeV)


Wuppertal-Budapest

Effective models of QCD:

Dyson-Schwinger equations

C. Fischer, J. Luecker, PLB718 (2013)

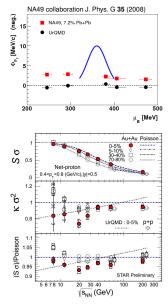
Heavy-ion collisions:

Fluctuations at the critical point

- In thermal systems the correlation length ξ diverges at the CP.
- Coupling of the order parameter to pions $g\sigma\pi\pi$ and protons $G\sigma\bar{p}p \Rightarrow$ fluctuations in multiplicity distributions

 $\langle (\delta \textit{N})^2 \rangle \propto \langle (\Delta \sigma)^2 \rangle \propto \xi^2$

M. Stephanov, K. Rajagopal, E. Shuryak, PRL 81 (1998), PRD 60 (1999)


 Higher cumulants are more sensitive to the CP

skewness: $\langle (\delta N)^3 \rangle \propto \xi^{4.5}$ kurtosis: $\langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2 \propto \xi^7$

M. Stephanov, PLB 102 (2009), PRL 107 (2011)

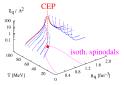
• Experimental difficulties, baryon number conservation

MN et al. EPJ C**72** (2012) A. Bzdak, V. Koch, PRC**86** (2012), PRC**87** (2013)

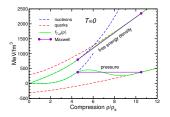
STAR collaboration, QM2012

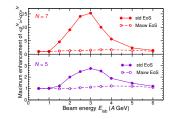
Fluctuations at the critical point

- Long relaxation times near a critical point
 ⇒ the system is driven out of equilibrium (critical slowing down)!
- Phenomenological equation:


$$\frac{d}{dt}m_{\sigma}(t) = -\Gamma[m_{\sigma}(t)](m_{\sigma}(t) - \frac{1}{\xi_{eq}(t)})$$
with $\Gamma(m_{\sigma}) = \frac{A}{\xi_{0}}(m_{\sigma}\xi_{0})^{Z}$
 $z = 3$
(dynamical) critical exponent
from model H in Hohenberg-Halperin
$$\Rightarrow \xi \sim 1.5 - 2.5 \text{ fm}$$
 0.5
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05

B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D. Son, M. Stephanov, PRD 70 (2004); M. Asakawa, C. Nonaka, Nucl. Phys. A774 (2006)


Fluctuations at the phase transition


- Large nonstatistical fluctuations in nonequilibrium situations of single events.
- Instability of slow modes in the spinodal region (spinodal decomposition)

I. Mishustin, PRL **82** (1999) C. Sasaki, B. Friman, K. Redlich, PRD **77** (2008)

Significant amplification of initial density irregularities

J. Steinheimer, J. Randrup, PRL 109 (2012), arXiv:1302.2956

Heavy-ion collisions are

- inhomogeneous
- finite in space and time
- and highly dynamical.
- ? Can nonequilibrium effects become strong enough to develop signals of the first-order phase transition?
- ? Do enhanced equilibrium fluctuations at the critical point survive the dynamics?

Goal:

Combine the fluid dynamical description of heavy-ion collisions with fluctuation phenomena at the phase transition!

- Explicit propagation of the order parameter(s) $N\chi$ FD
- Fluid dynamical fluctuations

Nonequilibrium chiral fluid dynamics - N χ FD

• Langevin equation for the sigma field: damping and noise from the interaction with the quarks (quark-meson model)

$$\partial_{\mu}\partial^{\mu}\sigma + \frac{\delta U}{\delta\sigma} + g\rho_{s} + \eta\partial_{t}\sigma = \xi$$

- For PQM: phenomenological dynamics for the Polyakov-loop
- Fluid dynamical expansion of the quark fluid = heat bath, including energy-momentum exchange

$$\partial_{\mu}T_{q}^{\mu\nu}=S^{\nu}=-\partial_{\mu}T_{\sigma}^{\mu\nu}$$

 \Rightarrow includes a stochastic source term!

• Nonequilibrium equation of state $p = p(e, \sigma)$

Selfconsistent approach within the 2PI effective action!

MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011); MN, S. Leupold, M. Bleicher, PLB 711 (2012); MN, C. Herold, S. Leupold, I. Mishustin, M. Bleicher, JPG40 (2013); C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013)

Talks by Alex Meistrenko, Christoph Herold, after the coffee break!

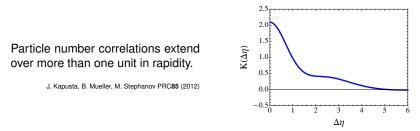
Relativistic theory of fluid dynamical fluctuations

- Conventional fluid dynamics propagates thermal average.
- If there was no noise $\Rightarrow \langle T^{\mu\nu}T^{\alpha\beta}\rangle = 0$, give viscosity via the Kubo-formalism.
- Fast processes lead to local equilibration AND to noise.
- \Rightarrow stochastic fluid dynamics by Landau, 1957
- \Rightarrow extention to relativistic fluid dynamics in the QCD:

$$\partial_{\mu}T^{\mu\nu} = 0 \qquad \partial_{\mu}N^{\mu}_{B} = 0$$

$$T^{\mu\nu} = T^{\mu\nu}_{eq} + \Delta T^{\mu\nu}_{visc} \qquad \text{on average}$$
$$T^{\mu\nu} = T^{\mu\nu}_{eq} + \Delta T^{\mu\nu}_{visc} + S^{\mu\nu}$$

 $\langle {\cal S}^{\mu
u}
angle =$ 0: noise


J. Kapusta, B. Mueller, M. Stephanov PRC85 (2012)

Relativistic theory of fluid dynamical fluctuations

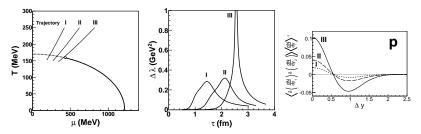
• Magnitude of the noise correlator from the fluctuation-dissipation theorem, it matches noise and dissipation (viscosity!)

$$\begin{split} \langle S^{\mu\nu}(x)S^{\alpha\beta}(y)\rangle &= 2T[\eta(\Delta^{\mu\alpha}\Delta^{\nu\beta}+\Delta^{\mu\beta}\Delta^{\nu\alpha})\\ &+ (\zeta-2/3\eta)\Delta^{\mu\nu}\Delta^{\alpha\beta}]\delta^4(x-y) \end{split}$$

- Noise is local but the fluid dynamical modes transport correlations over macroscopic distances.
- Example: boost-invariant Bjorken expansion:

Colored noise in second order viscous fluid dynamics in

K. Murase, T. Hirano, arxiv:1304.3243


Fluid dynamical fluctuations at a critical point

- Focus on thermal conductivity and set viscosities to zero.
- Use a background equation of state with a CP

$$\textit{P} = \textit{A}_{4}\textit{T}^{4} + \textit{A}_{2}\mu_{B}^{2}\textit{T}^{2} + \textit{A}_{0}\mu_{B}^{4} - \textit{C}\textit{T}^{2} - \textit{B}$$

J. Kapusta PRC81 (2010)

• Example: boost-invariant Bjorken expansion:

 On the flyby near the CP the thermal conductivity is enhanced ⇒ enhancement of the rapidity correlator of protons.

Summary

At CBM...

- The phase diagram can be studied at high net-baryon densities:
 - Fluctuation phenomena at the critical point.
 - Spinodal instabilities in the region of the first-order phase transition.
 - More exotic phases? Color superconductor? Quarkyonic matter?
- What is the equation of state at high net-baryon densities?
- Study rare probes in dense nuclear matter:
 - Electromagnetic probes, dileptons and direct photons \rightarrow chiral symmetry restoration? Hadronic or partonic sources?
 - Charm production and dynamics: what are the underlying production and interaction mechanisms?