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Radiation Environment in Deep Space

Source: adapted from NSBRI

Galactic Cosmic Rays (GCR) are the main concern for manned
missions in deep space.



Galactic Cosmic Rays

Detected particles from GCR
consist of 83% protons, 14%
helium and 1% heavier nuclei.
The maximum of the spectrum
for specific nuclei is between
100-1000 MeV/u.

simulation of different devices for different SEE types in

support to RHA guidelines development.

Conclusions

The results presented here show that radiation-induced

effects on electronic devices intrinsically depend both on

radiation and on target characteristics.

The impact of ion energy and species on the single event

effect cross section was investigated for different surface

LET values. Geant4-based simulations, testing and exten-

sive data analysis were performed for the RSEUM device.

It has been shown that the calculation of the RSEUM

sensitivity threshold and the cross-section behavior in the

sub-threshold region depend on ion momentum rather than

solely on surface LET.

The description of SEU cross sections using combined

information on surface LET and ion momentum (bc)

indicates a possible way to evaluate direct and indirect

ionization contributions to radiation damage. In particular,

for the devices under study, it has been shown that (1) fast

ions with low surface LET may still be able to upset the

device, (2) sub-threshold cross sections dominated by

direct ionization decrease with surface LET for increasing

ion momentum, and (3) sub-threshold cross sections

dominated by indirect ionization increase with surface LET

for increasing ion momentum.

The effects described above, being intrinsically

dependent on the ion characteristics, may be valid for all

kind of sensitive targets such as electrical, electronic and

electromechanical (EEE) components, biological systems,

tissues and materials. However, their quantification and

implications in radiation protection and RHA require

further research in a case-by-case approach. It is con-

cluded that the methodologies described in the present

paper can be developed in the future for exploring these

effects and their implications to RHA and radiation

protection.
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Several ions contribute differently
to absorbed dose. Shielding is a
problem due to high charge high
energy (HZE) particles.



Space Research at FAIR

Source: GSI

Future research at FAIR shall
reduce uncertainties on radiation
effects due to HZE particles.



Radiation Effects by Ions

Better understanding of radiation effects due to ion tracks are required
for future interplanetary human missions.

9.5 MeV/u 12C by in-beam microscopy.

Source: B. Jakob et al., 2009

Single strand
breaks are usually
repaired by the
cell.

It is more difficult
to repair double
and multiple
strand breaks.

Energy imparted to tissue per unit of track length on scale of
micrometres and nanometres matters to the biological action of radiation.



Microdosimetry Technique

Patterns of energy deposition on micrometer scale are measured by
means of a Tissue-Equivalent Proportional Counter (TEPC).

Scheme of a typical
walled TEPC

TEPC: a plastic sphere filled
with low-pressure gas, equivalent
to a few µm sphere of tissue, an
object of a cell nucleus size.

Lineal energy: y = ε/̄l
ε: energy deposited in the TEPC
l̄ = 2

3d : mean chord length

TEPC is commonly flown on the
ISS. TEPC is also applied for
investigation of radiation effects at
ground-based facilities.

Monte Carlo simulations can be
applied to investigate different
scenarios of particle/energy/target
in space.



Monte Carlo Model for Investigation of Radiation Effects

The Monte Carlo model for Heavy-Ion Therapy (MCHIT) was
developed at FIAS for benchmarking of Geant4 models to
experimental data relevant to ion beam cancer therapy.

MCHIT was extended for benchmarking of models to experimental
data relevant to space research as well.

Detailed implementation of TEPCs are applied for simulation of
microdosimetric data for HZE particles.

MCHIT@FIAS
Wall-less
TEPC

Walled TEPC



Yield of Secondary Fragments
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Up to 70% of 400 MeV/u 12C
nuclei are fragmented.

Secondary fragments are created,
from protons till boron with various
radiobiological properties.

A lot of work for nuclear
fragmentation models!

Exp. data: E. Haettner et al., 2006 300 MeV/u 12C in water



TEPC Measurements at Several Positions at GSI (I)

Irradiation by 185 MeV/u 7Li and 300 MeV/u 12C pencil-like beams.

Source: G. Martino et al., 2010
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TEPC Measurements at Several Positions at GSI (II)

12C 300 MeV/u
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Spectra on beam
axis are mainly due
to primary ion and
heavy fragments.

At 2 cm away from
the beam axis the
spectra are mainly
due to light
fragments.

Source: L. Burigo et al., 2013



TEPC Measurements at Several Positions at GSI (III)

7Li 185 MeV/u

­110 1 10
210

3
10

io
n

y 
d

(y
)/

­3
10

­210

­110

1
0 cm, plateauexp. data

G4/MCHIT

Li

He

H

MCHIT (+pile­up)

m)µ (keV/y

­110 1 10
210

3
10

­410

­3
10

­210

­110

1
0 cm, peak

Results of simulations agree with experimental data at “0 cm, plateau”
when pile-up of events is taken into account.

Source: L. Burigo et al., 2013



Microdosimetry with Wall-Less TEPC at HIMAC (I)

Wall-less TEPC behind a range shifter irradiated by H, He and Si ions.

Lineal Energy Distributions of H, He and Si Ions 265

With these conditions in mind, measurements of the fre-

quency distribution of y, yf(y), were performed using select-

ed energetic heavy ions that differed in terms of atomic num-

ber and LET in wide range from 0.52 keV µm–1 to 260 keV

µm–1, for further improvement of the physical model used in

the biological dose calculation method.8) The systematically

measured data using a recently developed wall-less TEPC12)

were compared with values calculated using the microdosi-

metric function of PHITS. The differences between the

dose-mean lineal energy and the LET are also discussed.

EXPERIMENTAL

Measurements of the yf(y) for energetic heavy ion beams

were performed in the HIMAC-BIO beam line at the Heavy

Ion Medical Accelerator in Chiba (HIMAC)14) of the Nation-

al Institute of Radiological Science (NIRS), Japan, using a

wall-less TEPC.12) The features of the wall-less TEPC with

nearly wall-less detection part are shown in Fig. 1. The wall-

less TEPC has a cylindrical detection part consisting of a

thin spiral wire (cathode) and a thin central wire (anode).

The electric filed in the detection part is sustained by filed

tubes that made of cupper and set on the both side of the

detection part. The applied potentials were –800 volt to a

cathode, an anode to 0V (GND) and –665 volt to the field

tubes, respectively. The diameter and height of the detection

part are both 3 mm. The detection part was positioned at the

center of container filled with a propane-based tissue-equiv-

alent gas, TE-gas,6) at a pressure of 13.3 kPa (100 Torr),

whose pressure is equivalent to a 0.72 µm site size in tissue.

A 14 cm diameter beam window made of a 50 µm thick

polyamide film was positioned for use in inserting the heavy

ion beams into the container of the wall-less TEPC. The

Table 1. Ion beam species used in the measurement.

Ions H+ He2+ Si14+

Atomic mass 1 4 28

Effective charge 1 2 14

E (MeV/u) 160 150 490

LET (keV µm–1)a 0.52 2.2 55

adE/dx in water calculated by ATIMA.

Fig. 1. Photographs of the wall-less TEPC, (a) the overview, (b) 

the detection part and (c) the field tube. unit [mm].

Fig. 2. Experimental set-up in HIMAC-BIO (not in scale). The collimated size of the incident beams on

the wall-less TEPC is approximately 100 mm in diameter.
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the wall-less TEPC is approximately 100 mm in diameter.

Source: S. Tsuda et al., 2012

Wall-less TEPC behind a rage shifter.
Measurements are sensitive to nuclear
reactions.
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Calculated microdosimetric spectra
for protons behind a range shifter
with wall-less TEPC agree well with
experimental data.

Internal geometry of
wl-TEPC in MCHIT



Microdosimetry with Wall-Less TEPC at HIMAC (II)
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Microdosimetric spectra for
helium and silicon ions are well
described by G4/MCHIT.



Estimation of Radiation Effects by Ions (I)

The survival fraction S of cells can
be expressed as

S = exp
[
−αD − βD2

]
,

where D is the delivered dose and
α and β are parameters.

The Relative Biological Effectiveness (RBE) can be estimated using the
Microdosimetric-Kinetic (MK) model (Hawkins 2003, Kase et al. 2006)

RBE10 =
2βD10,R√

α2 − 4β ln (0.1) − α
α = α0 +

β

ρπr2d
y∗

y∗ is calculated from the microdosimetry spectrum.

Source: M. Beuve et al., 2009



Estimation of Radiation Effects by Ions (II)
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G4/MCHIT+MK model can be
used to estimate RBE for light ions.
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Conclusions

Methods used to simulate detectors in nuclear and particle physics
experiments are also successful for calculation of patterns of energy
deposition on micrometre scale.

With G4/MCHIT model one can calculate microdosimetric data for
many ions and beam energies relevant for ion beam cancer therapy
and space research.

Measurements with TEPC inside or behind a phantom impose a
challenge for hadronic models. Geant4 models are able to describe
reasonably well microdosimetric spectra in the presence of nuclear
fragmentation reactions.

G4/MCHIT coupled with MK model can be used for estimation of
RBE for light ions.
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