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Radiation Environment in Deep Space
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Galactic Cosmic Rays (GCR) are the main concern for manned
missions in deep space.
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Figure 1| Space radiation environment and shielding.  The contribution

Kinetic Energy (MeV/nucleon) in fluence (green), dose (blue), and dose equivalent (red) of different nuclei
in galactic cosmic radiation.
Source: A. Keating et al., 2012 Source: M. Durante and F. Cucinotta, 2008
Detected particles from GCR Several ions contribute differently
consist of 83% protons, 14% to absorbed dose. Shielding is a
helium and 1% heavier nuclei. problem due to high charge high
The maximum of the spectrum energy (HZE) particles.

for specific nuclei is between
100-1000 MeV/u.



Space Research at FAIR
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Radiation Effects by lons

Better understanding of radiation effects due to ion tracks are required
for future interplanetary human missions.
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Energy imparted to tissue per unit of track length on scale of
micrometres and nanometres matters to the biological action of radiation.



Microdosimetry Technique

Patterns of energy deposition on micrometer scale are measured by
means of a Tissue-Equivalent Proportional Counter (TEPC).

Scheme of a typical

walled TEPC
plastic wall

TEPC: a plastic sphere filled
with low-pressure gas, equivalent
to a few pum sphere of tissue, an
object of a cell nucleus size.

Lineal energy: y = ¢//
e: energy deposited in the TEPC
I = 2d: mean chord length

TEPC is commonly flown on the
ISS. TEPC is also applied for
investigation of radiation effects at
ground-based facilities.

Monte Carlo simulations can be
applied to investigate different
scenarios of particle/energy/target
in space.




Monte Carlo Model for Investigation of Radiation Effects

@ The Monte Carlo model for Heavy-lon Therapy (MCHIT) was
developed at FIAS for benchmarking of Geant4 models to
experimental data relevant to ion beam cancer therapy.

@ MCHIT was extended for benchmarking of models to experimental
data relevant to space research as well.

@ Detailed implementation of TEPCs are applied for simulation of
microdosimetric data for HZE particles.

Wall-less
TEPC

MCHITG@FIAS

Walled TEPC




Yield of Secondary Fragments
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TEPC Measurements at Several Positions at GSI (1)

Irradiation by 185 MeV/u “Li and 300 MeV/u 2C pencil-like beams.
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TEPC Measurements at Several Positions at GSI (II)
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TEPC Measurements at Several Positions at GSI (II1)

"Li 185 MeV/u
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@ Results of simulations agree with experimental data at “0 cm, plateau”
when pile-up of events is taken into account.

Source: L. Burigo et al., 2013



Microdosimetry with Wall-Less TEPC at HIMAC (1)

Wall-less TEPC behind a range shifter irradiated by H, He and Si ions.

n’ogbblff Collimator ~ Wall-less 5‘:;’;
agnc i
Scatter (Ta) ] CEE Wall-less TEPC behind a rage shifter.
l] ED Measurements are sensitive to nuclear
Heavy ion beams from Energy absorbers .
HIMAC synchrotron (Thickness variable) mm reactions.
™™=l Source: S. Tsuda et al., 2012
350
L . o E J T E
» 3 "H 160 MeV E
= o exp.data A
10° G4/MCHIT
Internal geometry of E ]
wl-TEPC in MCHIT 102 4
g2 WrTEPC behind ]
@ Calculated microdosimetric spectra E @ range shifter
. . of 163 mm-we ]
for protons behind a range shifter . . !
. . 107 = ,
with wall-less TEPC agree well with 10 ! Y eV

experimental data.
Source: L. Burigo et al., 2013



Microdosimetry with Wall-Less TEPC at HIMAC (II)
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Estimation of Radiation Effects by lons (I)

The survival fraction S of cells can
be expressed as

S =exp [-aD — BD?,

Surviving fraction

where D is the delivered dose and
« and 3 are parameters.
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The Relative Biological Effectiveness (RBE) can be estimated using the
Microdosimetric-Kinetic (MK) model (Hawkins 2003, Kase et al. 2006)

23D1o,r .
a=ag+ ——y
Va2 —48In(0.1) — o prrs

y* is calculated from the microdosimetry spectrum.

RBE;o =




Estimation of Radiation Effects by lons (II)
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o G4/MCHIT+MK model can be
used to estimate RBE for light ions.
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@ The fragmentation of ions may
reduce the RBE by 10% at the
Bragg peak.



Conclusions

@ Methods used to simulate detectors in nuclear and particle physics
experiments are also successful for calculation of patterns of energy
deposition on micrometre scale.

e With G4/MCHIT model one can calculate microdosimetric data for
many ions and beam energies relevant for ion beam cancer therapy
and space research.

@ Measurements with TEPC inside or behind a phantom impose a
challenge for hadronic models. Geant4 models are able to describe
reasonably well microdosimetric spectra in the presence of nuclear
fragmentation reactions.

@ G4/MCHIT coupled with MK model can be used for estimation of
RBE for light ions.
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