Zero temperature properties of mesons and baryons from an extended linear sigma-model

Péter Kovács (Wigner RCP, Budapest, Hungary)

FAIRNESS, 15-21 September 2013, Berlin

In collaboration with

Gy. Wolf (Wigner RCP), D. Parganlija (Vienna TU), F. Giacosa, D. Rischke (Uni. Frankfurt)

- Motivation
- QCDs chiral symmetry, effective models
- Extended linear σ -model
- Tree-level masses, Decay widths
- Parametrization
- Results
- Summary

Motivation

Our ultimate goal: finite temperature/chemical potential investigations \rightarrow determine the position of the chiral phase boundary in the $T - \mu_B$ plane / determine existence of the CEP in

- an effective model based on global symmetries of QCD
- with all the lightest multiplets (scalar, pseudoscalar, vector, axialvector, baryon octet, baryon decuplet) to give a good approximation
- At first \longrightarrow need to describe the zero temperature spectrum as good as possible \longrightarrow through the parametrization of the model

included particles:

- scalars, pseudoscalars (2 nonets, 18 particles)
- vectors, axialvectors (2 nonets, 18 particles)
- octet baryons, decuplet baryons (1 octet, 1 decuplet; 18 particles)

Problem in the scalar sector

	Mass (MeV)	width (MeV)	decays
$a_0(980)$	(980 ± 20)	50 - 100	$\pi\pi$ dominant
$a_0(1450)$	(1474 ± 19)	(265 ± 13)	$\pi\eta,\pi\eta',Kar{K}$
$K_0^{\star}(800) = \kappa$	(676 ± 40)	(548 ± 24)	$K\pi$
$K_0^{\star}(1430)$	(1425 ± 50)	(270 ± 80)	$K\pi$ dominant
$f_0(500) = \sigma$	550 - 1200	400 - 700	$\pi\pi$ dominant
$f_0(980)$	(990 ± 20)	40 - 100	$\pi\pi$ dominant
$f_0(1370)$	1200 - 1500	200 - 500	$\pi\pi \approx 250, K\bar{K} \approx 150$
$f_0(1500)$	(1505 ± 6)	(109 ± 7)	$\pi\pipprox 38, Kar{K}pprox 9.4$
$f_0(1710)$	(1720 ± 6)	(135 ± 8)	$\pi\pi pprox 30, K\bar{K} pprox 71$

according to the table: 2 a_0 's, 2 K_0 's, 5 f_0 's \leftrightarrow

in our model: 1 scalar nonet with 1 a_0 's, 1 K_0 's, 2 f_0 's

other possible scalar states: meson-meson molecules, glueballs, four quarks

Chiral symmetry

If the quark masses are zero (chiral limit) \implies QCD invariant under the following global transformation (chiral symmetry):

 $U(3)_L \times U(3)_R \simeq U(3)_V \times U(3)_A = SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$

 $U(1)_V$ term \longrightarrow baryon number conservation

 $U(1)_A$ term \longrightarrow broken through axial anomaly

 $SU(3)_A$ term \longrightarrow broken down by any quark mass

 $SU(3)_V$ term \longrightarrow broken down to $SU(2)_V$ if $m_u = m_d \neq m_s$ (isospin symmetry) \longrightarrow totally broken if $m_u \neq m_d \neq m_s$ (realized in nature)

Since QCD is very hard to solve \longrightarrow low energy effective models can be set up \longrightarrow reflecting the global symmetries of QCD \longrightarrow degrees of freedom: observable particles instead of quarks and gluons

Linear realization of the symmetry \longrightarrow linear sigma model (nonlinear representation \longrightarrow chiral perturbation theory (ChPT))

Extended linear sigma model (meson part)

(based on: chiral symmetry)

$$\begin{split} \mathcal{L}_{\text{ext}} &= \text{Tr}[(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)] - m_{0}^{2}\text{Tr}(\Phi^{\dagger}\Phi) - \lambda_{1}[\text{Tr}(\Phi^{\dagger}\Phi)]^{2} - \lambda_{2}\text{Tr}(\Phi^{\dagger}\Phi)^{2} \\ &- \frac{1}{4}\text{Tr}(L_{\mu\nu}^{2} + R_{\mu\nu}^{2}) + \text{Tr}\left[\left(\frac{m_{1}^{2}}{2} + \Delta\right)(L_{\mu}^{2} + R_{\mu}^{2})\right] + \text{Tr}[\hat{\epsilon}(\Phi + \Phi^{\dagger})] \\ &+ c_{1}(\det \Phi - \det \Phi^{\dagger})^{2} + i\frac{g_{2}}{2}(\text{Tr}\{L_{\mu\nu}[L^{\mu}, L^{\nu}]\} + \text{Tr}\{R_{\mu\nu}[R^{\mu}, R^{\nu}]\}) \\ &+ \frac{h_{1}}{2}\text{Tr}(\Phi^{\dagger}\Phi)\text{Tr}(L_{\mu}^{2} + R_{\mu}^{2}) + h_{2}\text{Tr}[(L_{\mu}\Phi)^{2} + (\Phi R_{\mu})^{2}] + 2h_{3}\text{Tr}(L_{\mu}\Phi R^{\mu}\Phi^{\dagger}). \\ &+ g_{3}[\text{Tr}(L_{\mu}L_{\nu}L^{\mu}L^{\nu}) + \text{Tr}(R_{\mu}R_{\nu}R^{\mu}R^{\nu})] + g_{4}[\text{Tr}(L_{\mu}L^{\mu}L_{\nu}L^{\nu}) + \text{Tr}(R_{\mu}R^{\mu}R_{\nu}R^{\nu})] \\ &+ g_{5}\text{Tr}(L_{\mu}L^{\mu}) \text{Tr}(R_{\nu}R^{\nu}) + g_{6}[\text{Tr}(L_{\mu}L^{\mu})\text{Tr}(L_{\nu}L^{\nu}) + \text{Tr}(R_{\mu}R^{\mu})\text{Tr}(R_{\nu}R^{\nu})] \\ &+ \mathcal{L}_{\text{baryon}}, \end{split}$$

where

$$D^{\mu}\Phi = \partial^{\mu}\Phi - ig_1(L^{\mu}\Phi - \Phi R^{\mu}) - ieA^{\mu}[T_3, \Phi]$$

$$\begin{split} \Phi &= \sum_{i=0}^{8} (\sigma_{i} + i\pi_{i})T_{i} \\ R^{\mu} &= \sum_{i=0}^{8} (\rho_{i}^{\mu} - b_{i}^{\mu})T_{i} \\ L^{\mu} &= \sum_{i=0}^{8} (\rho_{i}^{\mu} + b_{i}^{\mu})T_{i} \\ L^{\mu\nu} &= \partial^{\mu}L^{\nu} - ieA^{\mu}[T_{3}, L^{\nu}] - \{\partial^{\nu}L^{\mu} - ieA^{\nu}[T_{3}, L^{\mu}]\} \\ R^{\mu\nu} &= \partial^{\mu}R^{\nu} - ieA^{\mu}[T_{3}, R^{\nu}] - \{\partial^{\nu}R^{\mu} - ieA^{\nu}[T_{3}, R^{\mu}]\} \\ \hat{\epsilon} &= \sum_{i=0}^{8} \varepsilon_{i}T_{i} \qquad U(3) \text{ generators: } T_{0} := \frac{1}{\sqrt{6}}\mathbf{1}, T_{i} = \frac{\lambda_{i}}{2} \ i = 1 \dots 8 \end{split}$$

determinant breaks $U_A(1)$ symmetry explicit symmetry breaking: external fields $\varepsilon_0, \varepsilon_8 \neq 0 \iff m_u = m_d \neq 0, m_s \neq 0$ or $\varepsilon_0, \varepsilon_3, \varepsilon_8 \neq 0 \iff m_u \neq m_d \neq 0, m_s \neq 0$

non strange – strange base:

$$\varphi_N = \sqrt{2/3}\varphi_0 + \sqrt{1/3}\varphi_8,$$

$$\varphi_S = \sqrt{1/3}\varphi_0 - \sqrt{2/3}\varphi_8, \qquad \varphi \in (\sigma, \pi, \varepsilon)$$

broken symmetry: non-zero condensates $\langle \sigma_N \rangle, \langle \sigma_S \rangle \longleftrightarrow \phi_N, \phi_S$

Pseudoscalar- and scalarmeson nonets

$$\Phi_{PS} = \sum_{i=0}^{8} \pi_i T_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\eta_N + \pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & K^0 & \eta_S \end{pmatrix} (\sim \bar{q}_i \gamma_5 q_j)$$

$$\Phi_S = \sum_{i=0}^{8} \sigma_i T_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sigma_N + a_0^0}{\sqrt{2}} & a_0^+ & K_S^+ \\ a_0^- & \frac{\sigma_N - a_0^0}{\sqrt{2}} & K_S^0 \\ K_S^- & K_S^0 & \sigma_S \end{pmatrix} (\sim \bar{q}_i q_j)$$

Particle content:

Pseudoscalars: $\pi(138), K(495), \eta(548), \eta'(958)$ Scalars: $a_0(980 \text{ or } 1450), K_0^{\star}(800 \text{ or } 1430), (\sigma_N, \sigma_S) : 2 \text{ of } f_0(500, 980, 1370, 1500, 1710)$

Vector- and axialvectormeson nonets

$$V^{\mu} = \sum_{i=0}^{8} \rho_{i}^{\mu} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{N} + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{\star +} \\ \rho^{-} & \frac{\omega_{N} - \rho^{0}}{\sqrt{2}} & K^{\star 0} \\ K^{\star -} & \overline{K}^{\star 0} & \omega_{S} \end{pmatrix}^{\mu}$$
$$A_{V}^{\mu} = \sum_{i=0}^{8} b_{i}^{\mu} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N} + a_{1}^{0}}{\sqrt{2}} & a_{1}^{+} & K_{1}^{+} \\ \frac{a_{1}^{-}}{\sqrt{2}} & \frac{f_{1N} - a_{1}^{0}}{\sqrt{2}} & K_{1}^{0} \\ K_{1}^{-} & \overline{K}_{1}^{0} & f_{1S} \end{pmatrix}^{\mu}$$

Particle content: Vector mesons: $\rho(770), K^*(892), \omega_N = \omega(782), \omega_S = \phi(1020)$ Axial vectors: $a_1(1230), K_1(1270), f_{1N}(1280), f_{1S}(1426)$

Extended linear sigma model (baryon part)

 $\mathcal{L}_{\text{baryon}} = \text{Tr} \left[\bar{B} \left(i D - M_{(8)} \right) B \right]$ $- \operatorname{Tr} \left\{ \bar{\Delta}_{\mu} \left[\left(i D - M_{(10)} \right) g^{\mu\nu} - i \left(\gamma^{\mu} D^{\nu} + \gamma^{\nu} D^{\mu} \right) \gamma^{\mu} \left(i D + M_{(10)} \right) \gamma^{\nu} \right] \Delta_{\nu} \right\}$ + $C \operatorname{Tr} \left| \bar{\Delta}^{\mu} \cdot \left(-\frac{1}{f} (\partial_{\mu} - ieA^{e}_{\mu}[T_{3}, \Phi]) - \frac{g_{1}}{f} [\Phi, V_{\mu}] + g_{1}A_{\mu} \right) B \right| + h. \text{ c.}$ $- \xi_1 \operatorname{Tr}(\bar{B}B) \operatorname{Tr}(\Phi^{\dagger}\Phi) - \xi_2 \operatorname{Tr}(\bar{B}\{\{\Phi, \Phi^{\dagger}\}, B\}) - \xi_3 \operatorname{Tr}(\bar{B}[\{\Phi, \Phi^{\dagger}\}, B])$ $- \xi_4 \left(\operatorname{Tr} \left(\bar{B} \Phi \right) \operatorname{Tr} \left(\Phi^{\dagger} B \right) + \operatorname{Tr} \left(\bar{B} \Phi^{\dagger} \right) \operatorname{Tr} \left(\Phi B \right) \right) - \xi_5 \operatorname{Tr} \left(\bar{B} \{ [\Phi, \Phi^{\dagger}], B \} \right)$ $- \xi_6 \operatorname{Tr} \left(\bar{B} [[\Phi, \Phi^{\dagger}], B] \right) - \xi_7 \left(\operatorname{Tr} \left(\bar{B} \Phi \right) \operatorname{Tr} \left(\Phi^{\dagger} B \right) - \operatorname{Tr} \left(\bar{B} \Phi^{\dagger} \right) \operatorname{Tr} \left(\Phi B \right) \right)$ $-\xi_8 \left(\operatorname{Tr} \left(\bar{B} \Phi B \Phi^{\dagger} \right) - \operatorname{Tr} \left(\bar{B} \Phi^{\dagger} B \Phi \right) \right) + \chi_1 \operatorname{Tr} \left(\bar{\Delta} \cdot \Delta \right) \operatorname{Tr} \left(\Phi^{\dagger} \Phi \right)$ $\chi_2 \operatorname{Tr} \left((\bar{\Delta} \cdot \Delta) \{ \Phi, \Phi^{\dagger} \} \right) + \chi_3 \operatorname{Tr} \left((\bar{\Delta} \cdot \Phi) (\Phi^{\dagger} \cdot \Delta) + (\bar{\Delta} \cdot \Phi^{\dagger}) (\Phi \cdot \Delta) \right)$ + $\chi_4 \operatorname{Tr} \left((\bar{\Delta} \cdot \Delta) [\Phi, \Phi^{\dagger}] \right)$

note: mass terms based on every possible invariants which contains 2 B (or Δ) and 2Φ fields \longrightarrow only blue terms contribute

Baryon octet, decuplet

$$B = \sqrt{2} \sum_{i=0}^{8} b_a T_a = \begin{pmatrix} \frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda^0 & \Sigma^+ & p \\ \Sigma^- & -\frac{1}{\sqrt{2}} \Sigma^0 + \frac{1}{\sqrt{6}} \Lambda^0 & n \\ -\Xi^- & \Xi^0 & -\frac{2}{\sqrt{2}} \Lambda^0 \end{pmatrix}$$

$$\begin{split} \Delta_{\mu}^{111} &= \Delta_{\mu}^{++}, \quad \Delta_{\mu}^{112} = \frac{1}{\sqrt{3}} \Delta_{\mu}^{+}, \quad \Delta_{\mu}^{122} = \frac{1}{\sqrt{3}} \Delta_{\mu}^{0}, \quad \Delta_{\mu}^{222} = \Delta_{\mu}^{-}, \\ \Delta_{\mu}^{113} &= \frac{1}{\sqrt{3}} \Sigma_{\mu}^{\star+}, \quad \Delta_{\mu}^{123} = \frac{1}{\sqrt{6}} \Sigma_{\mu}^{\star0}, \quad \Delta_{\mu}^{223} = \frac{1}{\sqrt{3}} \Sigma_{\mu}^{\star-}, \\ \Delta_{\mu}^{133} &= \frac{1}{\sqrt{3}} \Xi_{\mu}^{\star0}, \quad \Delta_{\mu}^{233} = \frac{1}{\sqrt{3}} \Xi_{\mu}^{\star-}, \\ \Delta_{\mu}^{333} &= \Omega_{\mu}^{-} \end{split}$$

Particle content:

Octet baryons: $p/n(938), \Sigma(1193), \Xi(1315), \Lambda(1116)$ Decuplet baryons: $\Delta(1232), \Sigma^*(1385), \Xi^*(1530), \Omega(1672)$

Spontaneous symmetry breaking and particle mixing

SSB \longrightarrow through Higgs mechanism generates particle masses \longrightarrow since vacuum has zero quantum numbers \longrightarrow only $\sigma_0, \sigma_8, \sigma_3$ (equivalently $\sigma_N, \sigma_S, \sigma_3$) can have non-zero vev ($\sigma_3 \longrightarrow$ isospin violation \longrightarrow neglected)

note: pion/kaon condensates \longrightarrow even other σ 's have non-zero expectation values (\longrightarrow parity, charge violation)

shifting with vev in the Lagrangian: $\sigma_i \rightarrow \sigma_i + \phi_i$ (\longrightarrow mass generation)

- For (pseudo)scalars this shifting results in particle mixing in the N S sector $\longrightarrow \sigma_N/\pi_N, \sigma_S/\pi_S$ fields are not mass eigenstates \longrightarrow orthogonal transformations needed to resolve
- For (axial)vectors —> mixing between different nonets —> resolved by certain field shiftings —> results in: field renormalization constants
- For baryons there is no mixing

Tree-level meson masses

Pseudoscalar mass squares:

$$\begin{split} m_{\pi}^{2} &= Z_{\pi}^{2} \left[m_{0}^{2} + \Lambda_{N} \Phi_{N}^{2} + \lambda_{1} \Phi_{S}^{2} \right] \\ m_{K}^{2} &= Z_{K}^{2} \left[m_{0}^{2} + \Lambda_{N} \Phi_{N}^{2} - \frac{\lambda_{2}}{\sqrt{2}} \Phi_{N} \Phi_{S} + \Lambda_{S} \Phi_{S}^{2} \right] \\ m_{\eta_{N}}^{2} &= Z_{\pi}^{2} \left[m_{0}^{2} + \Lambda_{N} \Phi_{N}^{2} + \lambda_{1} \Phi_{S}^{2} + c_{1} \Phi_{N}^{2} \Phi_{S}^{2} \right] \\ m_{\eta_{S}}^{2} &= Z_{\eta_{S}}^{2} \left[m_{0}^{2} + \lambda_{1} \Phi_{N}^{2} + \Lambda_{s} \Phi_{S}^{2} + \frac{c_{1}}{4} \Phi_{N}^{4} \right] \\ m_{\eta_{NS}}^{2} &= Z_{\pi} Z_{\pi_{S}} \frac{c_{1}}{2} \Phi_{N}^{3} \Phi_{S} \end{split}$$

Scalar mass squares:

$$\begin{split} m_{a_0}^2 &= m_0^2 + \Lambda'_N \Phi_N^2 + \lambda_1 \Phi_S^2 \\ m_{K_S}^2 &= Z_{K_S}^2 \left[m_0^2 + \Lambda_N \Phi_N^2 + \frac{\lambda_2}{\sqrt{2}} \Phi_N \Phi_S + \Lambda_S \Phi_S^2 \right] \\ m_{\sigma_N}^2 &= m_0^2 + 3\Lambda_N \Phi_N^2 + \lambda_1 \Phi_S^2 \\ m_{\sigma_S}^2 &= m_0^2 + \lambda_1 \Phi_N^2 + 3\Lambda_s \Phi_S^2 \\ n_{\sigma_NS}^2 &= 2\lambda_1 \Phi_N \Phi_S \end{split}$$

Mass square eigenvalues for σ and π in the N-S sector

$$m_{f_0^{\prime}/f_0^{I}}^2 = \frac{1}{2} \left[m_{\sigma_N}^2 + m_{\sigma_S}^2 \pm \sqrt{(m_{\sigma_N}^2 - m_{\sigma_S}^2)^2 + 4m_{\sigma_{NS}}^2} \right]$$
$$m_{\eta^{\prime}/\eta}^2 = \frac{1}{2} \left[m_{\eta_N}^2 + m_{\eta_S}^2 \pm \sqrt{(m_{\eta_N}^2 - m_{\eta_S}^2)^2 + 4m_{\eta_{NS}}^2} \right]$$

Vector mass squares:

$$m_{\rho}^{2} = m_{1}^{2} + \frac{1}{2}(h_{1} + h_{2} + h_{3})\Phi_{N}^{2} + \frac{h_{1}}{2}\Phi_{S}^{2} + 2\delta_{N}$$

$$m_{K^{\star}}^{2} = m_{1}^{2} + H_{N}\Phi_{N}^{2} + \frac{1}{\sqrt{2}}\Phi_{N}\Phi_{S}(h_{3} - g_{1}^{2}) + H_{S}\Phi_{S}^{2} + \delta_{N} + \delta_{S}$$

$$m_{\omega_{N}}^{2} = m_{\rho}^{2}$$

$$m_{\omega_{S}}^{2} = m_{1}^{2} + \frac{h_{1}}{2}\Phi_{N}^{2} + \left(\frac{h_{1}}{2} + h_{2} + h_{3}\right)\Phi_{S}^{2} + 2\delta_{S}$$

Axialvector meson mass squares:

$$\begin{split} m_{a_1}^2 &= m_1^2 + \frac{1}{2} (2g_1^2 + h_1 + h_2 - h_3) \Phi_N^2 + \frac{h_1}{2} \Phi_S^2 + 2\delta_N \\ m_{K_1}^2 &= m_1^2 + H_N \Phi_N^2 - \frac{1}{\sqrt{2}} \Phi_N \Phi_S (h_3 - g_1^2) + H_S \Phi_S^2 + \delta_N + \delta_S \\ m_{f_{1N}}^2 &= m_{a_1}^2 \\ m_{f_{1S}}^2 &= m_1^2 + \frac{h_1}{2} \Phi_N^2 + \left(2g_1^2 + \frac{h_1}{2} + h_2 - h_3 \right) \Phi_S^2 + 2\delta_S \end{split}$$

Tree-level baryon masses

Octet masses:

$$m_{p} = m_{n} = \frac{1}{2}\xi_{1}(\Phi_{N}^{2} + \Phi_{S}^{2}) + \frac{1}{2}\xi_{2}(\Phi_{N}^{2} + 2\Phi_{S}^{2}) + \frac{1}{2}\xi_{3}(\Phi_{N}^{2} - 2\Phi_{S}^{2})$$

$$m_{\Xi} = \frac{1}{2}\xi_{1}(\Phi_{N}^{2} + \Phi_{S}^{2}) + \frac{1}{2}\xi_{2}(\Phi_{N}^{2} + 2\Phi_{S}^{2}) - \frac{1}{2}\xi_{3}(\Phi_{N}^{2} - 2\Phi_{S}^{2})$$

$$m_{\Sigma} = \frac{1}{2}\xi_{1}(\Phi_{N}^{2} + \Phi_{S}^{2}) + \xi_{2}\Phi_{N}^{2}$$

$$m_{\Lambda} = \frac{1}{2}\xi_{1}(\Phi_{N}^{2} + \Phi_{S}^{2}) + \frac{1}{3}\xi_{2}(\Phi_{N}^{2} + 4\Phi_{S}^{2}) + \frac{1}{3}\xi_{4}(\Phi_{N} - \sqrt{2}\Phi_{S})^{2}$$

Decuplet masses:

$$\begin{split} m_{\Delta} &= \frac{1}{2} \chi_1 (\Phi_N^2 + \Phi_S^2) + \frac{1}{2} \chi_2 \Phi_N^2 \\ m_{\Sigma^{\star}} &= \left(\frac{1}{2} \chi_1 + \frac{1}{3} \chi_2 \right) (\Phi_N^2 + \Phi_S^2) + \frac{1}{6} \chi_3 (\Phi_N - \sqrt{2} \Phi_S)^2 \\ m_{\Xi^{\star}} &= \frac{1}{2} \chi_1 (\Phi_N^2 + \Phi_S^2) + \frac{1}{6} \chi_2 (\Phi_N^2 + 4 \Phi_S^2) + \frac{1}{6} \chi_3 (\Phi_N - \sqrt{2} \Phi_S)^2 \\ m_{\Omega} &= \frac{1}{2} \chi_1 (\Phi_N^2 + \Phi_S^2) + \chi_2 \Phi_N^2 \end{split}$$

Decay widths

For a $A \rightarrow BC$ decay process the decay with is:

$$\Gamma_{A \to BC} = \frac{k_A}{8\pi m_A^2} \left| \mathcal{M}_{A \to BC} \right|^2$$

 $k_A \longrightarrow$ three momentum of the produced particles in the rest frame of $A \mathcal{M}_{A \to BC} \longrightarrow$ transition matrix element

• If A vector meson and $C = B^{\dagger}$ (pseudo)scalar meson: $|\mathcal{M}_{A\to BB^{\dagger}}|^2 = \frac{4}{3}k_A^2V_{\mu}V^{\mu\star}$

 $V_{\mu} \longrightarrow$ vertex function directly followed from the three-coupling terms of \mathcal{L}

• If A vector meson, B scalar meson and $C = \gamma$ (photon):

$$|\mathcal{M}_{A\to B\gamma}|^2 = \frac{1}{3} \left(g^{\alpha\beta} - \frac{k_A^{\alpha}k_A^{\beta}}{m_A^2} \right) V_{\alpha\alpha'} V_{\beta}^{\star\alpha'}$$

• If A vectorspinor B pseudoscalar and C spinor:

$$|\mathcal{M}_{A\to BC}|^2 = \frac{2}{3}|G|^2k_A^2m_A(m_C + E_C)$$

where the vertex function from the Lagrangian $V^{\mu} = iGk_{B}^{\mu}$

Some decay widths

• The $\rho \rightarrow \pi \pi$ decay width:

$$\Gamma_{\rho \to \pi\pi} = \frac{m_{\rho}^5}{48\pi m_{a_1}^4} \left[1 - \left(\frac{2m_{\pi}}{m_{\rho}}\right)^2 \right]^{3/2} \left[g_1 Z_{\pi}^2 - \frac{g_2}{2} \left(Z_{\pi}^2 - 1 \right) \right]^2$$

The experimental value from the PDG: $\Gamma_{\rho \to \pi\pi}^{(exp)} = (149.1 \pm 0.8) \text{ MeV}$

• The $a_1 \rightarrow \pi \gamma$ decay width:

$$\Gamma_{a_1 \to \pi\gamma} = \frac{e^2 g_1^2 \Phi_N^2}{96\pi m_{a_1}} Z_\pi^2 \left[1 - \left(\frac{m_\pi}{m_{a_1}}\right)^2 \right]^3$$

The experimental value: $\Gamma_{a_1 \to \pi\gamma}^{(exp)} = (0.640 \pm 0.246) \text{ MeV}$

• The $\Delta \rightarrow \pi p$ decay width:

$$\Gamma_{\Delta \to \pi p} = \frac{k_{\Delta}^3}{24m_{\Delta}} (m_p + E_p) C^2 Z_{\pi}^2 (\frac{1}{f^2} + g_1^2 w_{a_1}^2)$$

The experimental value: $\Gamma^{(exp)}_{\Delta \to \pi p} \approx 110 \text{ MeV}$

Parametrization: general considerations

In order to make predictions \longrightarrow unknown constants of the model must be determined

 \implies choose a set of (well known) physical quantities/conditions for fitting procedure

For instance:

- PartiallyConservedAxialCurrent \longrightarrow fix the condensates (2 parameter)
- Particle masses (which can be compared with PDG)
- Decay widths (which can be compared with PDG)

Finding a good parameter set \longrightarrow non-trivial task (usually there are lots of solutions, but non of them is perfect)

The parameters are determined in several steps (first: mesons without f_0 , second: f_0 mesons, third: baryons)

Parametrization

21 unknown parameters \longrightarrow Determined by the minimalization of the χ^2 :

$$\chi^2(x_1,\ldots,x_N) = \sum_{i=1}^M \left[\frac{Q_i(x_1,\ldots,x_N) - Q_i^{\mathsf{exp}}}{\delta Q_i^{\mathsf{exp}}} \right]^2,$$

where $(x_1, \ldots, x_N) = (m_0, \lambda_1, \lambda_2, \ldots)$, $Q_i(x_1, \ldots, x_N)$ calculated from the model, while $Q_i^{exp} \pm \delta Q_i^{exp}$ taken from the PDG multiparametric minimalization \longrightarrow MINUIT

- PCAC $\rightarrow 2$ physical quantities: f_{π}, f_{K}
- Tree-level masses $\rightarrow 22$ physical quantities:

Solve mesons: $m_{\pi}, m_{\eta}, m_{\eta'}, m_{K}, m_{\rho}, m_{\Phi}, m_{K^{\star}}, m_{a_{1}}, m_{f_{1}^{H}}, m_{K_{1}}, m_{a_{0}}, m_{K_{s}},$ $m_{f_{0}^{L}}, m_{f_{0}^{H}}$ Solve baryons: $m_{p}, m_{\Xi}, m_{\Sigma}, m_{\Lambda}, m_{\Delta}, m_{\Sigma^{\star}}, m_{\Xi^{\star}}, m_{\Omega}$

• Decay widths $\rightarrow 16$ physical quantities:

Results

• First run \rightarrow which pairs of a_0, K_0^{\star} give acceptable fits

 f_0 mesons were left out \rightarrow their properties are very uncertain (Different analyses give different results)

13 parameters to fit 28 measured quantities

Pair	χ^2	χ^2_{red}
$a_0(1450)/K_0^{\star}(1430)$	12.33	1.23
$a_0(980)/K_0^{\star}(800)$	129.36	11.76
$a_0(980)/K_0^{\star}(1430)$	22.00	2.00
$a_0(1450)/K_0^{\star}(800)$	242.27	24.23

The best χ^2 is given by the pair: $a_0(1450), K_0^{\star}(1430)$

- Second run \rightarrow which pair of f_0 's gives a better fit Detailed analysis shows $\rightarrow (f_0(1370), f_0(1710))$ are favored
- Third run → Describe the baryon octet and decuplet masses and decuplet decays → +8 parameters for +12 physical quantities
 → results in a good description of the baryons

Observable	Fit [MeV]	Experiment [MeV]
f_{π}	96.3 ± 0.7	92.2 ± 4.6
f_K	106.9 ± 0.6	110.4 ± 5.5
m_{π}	141.0 ± 5.8	137.3 ± 6.9
m_K	485.6 ± 3.0	495.6 ± 24.8
m_η	509.4 ± 3.0	547.9 ± 27.4
$m_{\eta'}$	962.5 ± 5.6	957.8 ± 47.9
$m_{ ho}$	783.1 ± 7.0	775.5 ± 38.8
$m_{K^{\star}}$	885.1 ± 6.3	893.8 ± 44.7
m_{ϕ}	975.1 ± 6.4	1019.5 ± 51.0
m_{a_1}	1186 ± 6	1230 ± 62
$m_{f_1(1420)}$	1372.5 ± 5.3	1426.4 ± 71.3
m_{a_0}	1363 ± 1	1474 ± 74
$m_{K_0^\star}$	1450 ± 1	1425 ± 71
$\Gamma_{\rho \to \pi\pi}$	160.9 ± 4.4	149.1 ± 7.4
$\Gamma_{K^{\star} \to K\pi}$	44.6 ± 1.9	46.2 ± 2.3
$\Gamma_{\phi \to \bar{K}K}$	3.34 ± 0.14	3.54 ± 0.18
$\Gamma_{a_1 \to \rho \pi}$	549 ± 43	425 ± 175
$\Gamma_{a_1 \to \pi \gamma}$	0.66 ± 0.01	0.64 ± 0.25
$\Gamma_{f_1(1420)\to K^\star K}$	44.6 ± 39.9	43.9 ± 2.2
Γ_{a_0}	266 ± 12	265 ± 13
$\Gamma_{K_0^{\star} \to K\pi}$	285 ± 12	270 ± 80

Observable	Fit [MeV]	χ^2	Experiment [MeV]
m_p	939.0	0.0	939.0 ± 47.0
m_{Λ}	1116.0	0.0	1116.0 ± 55.8
m_{Σ}	1193.0	0.0	1193.0 ± 59.7
m_{Ξ}	1318.0	0.0	1318.0 ± 65.9
m_Δ	1231.9	$5.0\cdot 10^{-6}$	1232.0 ± 61.6
$m_{\Sigma^{\star}}$	1385.5	$6.1 \cdot 10^{-5}$	1385.0 ± 69.3
$m_{\Xi^{\star}}$	1532.3	$7.4\cdot 10^{-5}$	1533.0 ± 76.7
m_Ω	1672.3	$1.0\cdot 10^{-5}$	1672.0 ± 83.6
$\Gamma_{\Delta \to p\pi}$	67.3	15.1	110.0 ± 11.0
$\Gamma_{\Sigma^{\star} \to \Lambda \pi}$	27.0	2.4	32.0 ± 3.2
$\Gamma_{\Sigma^{\star} \to \Sigma \pi}$	4.9	2.0	4.3 ± 0.4
$\Gamma_{\Xi^{\star} \to \Xi \pi}$	11.2	3.1	9.5 ± 1.0

- 4 octet masses with 4 parameter \rightarrow perfect fit (not so surprising)
- 4 decuplet masses with 3 parameters → perfect fit (more surprising)
- 4 decuplet decays with 1 parameter (their ratios are purely kinematical) \longrightarrow acceptable fit

Comparison of theory and experiment for observables

More detail in: Phys. Rev. D 87, 014011 (2013), [arXiv:1208.0585 [hep-ph]]

 $(f_0(1370), f_0(1500), f_0(1710))$: mixing of glueball and the 2 scalar nonet states $(f_0(500), f_0(980))$: ? molecular states, tetraquark

Summary

- Vacuum phenomenology was presented within the framework of an extended linear sigma model with the lowest lying particle multiplets including scalars, pseudoscalars, vectors, axialvectors, octet baryons, and decuplet baryons
- We used multiparametric χ^2 minimalization for the determination of Lagrangian parameters
- In the meson sector we found that the $a_0(q\bar{q})$ must be assigned to $a_0(1450)$, while the $K_S(q\bar{q})$ to $K_0^{\star}(1430)$, while the two $f_0(q\bar{q})$ should be assigned to $f_0(1370)$ and $f_0(1710)$
- In the baryon sector we see that the octet and decuplet masses can be described with extremely good precision, while the decuplet decay width with acceptable precision
- The establishment of the vacuum phenomenology gives a good background to future finite temperature/density investigations