Monte-Carlo simulation of lepton pairs production in

" $p \bar{p} \rightarrow \mathbf{e}^{+} e^{-}+X^{\prime \prime}$ events at PANDA

A.N.Skachkova

Previous publications

 \square- Monte-Carlo simulation of lepton pair production in "p pbar $\rightarrow \ell^{+} \ell^{-}+X^{\prime}$ " events at $E_{\text {beam }}=14 \mathrm{GeV}$ A.N.Skachkova, N.B.Skachkov, G.D.Alexeev arXiv: hep-ph/0506139 PANDA-NOTE PHY-003
- On Lepton Pair Production in Proton-Antiproton Collisions at Intermediate Energies
A.N.Skachkova, N.B.Skachkov

PepanLetters: JINR, ISSN:1814-5957, eISSN:1814-5973,
V. 6 №: 4 (153) - 2009. = Pp. 504-518

- Monte-Carlo simularion of lepton pairs production in " $p p^{-} \rightarrow m u+m u-$ $+X^{\prime \prime}$ events at $E($ beam $)=5 \mathrm{GeV}$
Anna Skachkova
J.Phys.Conf.Ser. 426 (2013) 012031, 5 pp
V.A. Matveev, R.M. Muradian, A.N. Tavkhelidze (MMT)
(V.A. Matveev, R.M. Muradian, A.N Tavkhelidze, JINR P2-4543, JINR, Dubna, 1969; SLAC-TRANS-0098, JINR R2-4543, Jun 1969; 27p.)
process, called also as Drell-Yan
(S.D. Drell, T.M. Yan, SLAC-PUB-0755, Jun 1970,12p.; Phys.Rev.Lett. 25(1970)316-320, 1970)
The dominant mechanism
of the $\ell^{+} \ell^{-}$production is the perturbative QED/QCD partonic $2 \rightarrow 2$ process

$$
\bar{q}_{i} q_{i} \rightarrow \gamma^{\times} / Z^{\circ} \rightarrow e^{+} e^{-}
$$

$$
\sigma=4.59 * 10^{3} p b
$$

We can expect to gain a huge sample of about 7×10^{6} sigunal dillepton events per 1 year (107 sec.)

PYTHIA 6 simulation for the $\underline{E}_{\text {beam }}=15 \mathrm{GeV}$ (5.474 GeV center-of-mass energy) without detector effects ("ideal detector" --> all particles are detected) allows a proper account of the relativistic kinematics during the simulation

Anna Skachkova. "Simulation of e+e" pairs production ât PANDA". FAlRNESS"2013. 16-21.09.2013, Berlin, Germany

Fíanda Lepton pairs production

The process of lepton pairs production q qbar $\rightarrow \gamma^{*} / Z^{\circ} \rightarrow \ell^{+} \ell$ is of big physical interest because:

1. The spectrum of final state leptons (e and μ) obviously depends on the form of parton distributions inside colliding protons and may provide an interesting information about the quark dynamics inside the hadron.
2. The measurement of the total transverse momentum of a lepton pair PT ($\left.\ell^{+} \ell^{-}\right)$as a whole may provide an important information about the intrinsic transverse momentum <kT> that appears due to the Fermi motion of quarks inside the nucleon
$2: 938$

Different to the electron beams, used for measurements of proton structure functions in the region of !negative! values of the square of transferred momentum ($\mathbf{q}^{2}<0$, "space-like" region),
antiproton-proton collisions allow to make measurements of proton structure functions in the region of !positive! values of the square of the transferred momentum ($\mathbf{q}^{2}>0$, "time-like" region), which is less studied!
$\overline{\text { Panda }}$

Global variable for

 $\bar{q} q \rightarrow \gamma^{*} \rightarrow \ell^{+} \ell^{-}$process $-\mathrm{M}_{\text {inv }} \ell^{+} \ell^{-}$

- $\mathbf{M}_{\mathrm{inv}} \ell^{+} \ell^{-}=\sqrt{\left(\mathbf{P}^{+}+\mathbf{P} \ell^{-}\right)^{2}}$
$M_{i n v} \ell+\ell \min =M_{i n v} \bar{q} q=1 \mathrm{GeV}$
- originates from the internal PYTHIA restriction
- $\mathbf{M}_{i n v} \bar{q} q=\sqrt{\left(\mathbf{P}_{q}+\mathbf{P} \bar{q}\right)^{2}}$
$=\mathrm{m}$ _hat $\approx 2.5 \mathrm{GeV}$
\rightarrow transferred $\mathrm{Q}^{2}<6.2 \mathrm{GeV}^{2}$

Estimation of the $\mathrm{x}-\mathrm{Q}^{2}$ region, available for the structure functions measurement

MMT-DY process

Simulation of electron kinematical
 characteristics was done with use of PandaRoot \& Geant 4 (presented by pink histograms)
 with the set of 10000 events simulated by PYTHIA6.4.

The corresponding histograms done with use of the PYTHIA6.4 alone are superimposed for comparison (violet line).

The number of events where one of the signal leptons is not registered in detector is 1285 for 10000 generated events. There are also 127 events where no one of signal leptons is registered. That means we can expect the registration of only 85.8% of signal events. The number of signal events where both of the signal leptons satisfy the criteria $\mathrm{Pe}>0.2 \mathrm{GeV}$ and PTe $>0.2 \mathrm{GeV}$ is 62.6%.

戸̈anda
 $P x^{e}, P y^{e}, P z^{e}$ of $e^{+} \& e$

Anna Skachkova. "Simulation of e+e" pairs procluction at̂ PANDA". FAlRNESS"2013. 16-21.09.2013, Berlin, Germany

Anna Skachkova. "Simulation of e+e" pairs production att PANDA". FAIRNESS"2013. 16-21.09.2013, Berlin, Germany

Anna Skachkova. "Simulation of e+e" pairs procluction at̂ PANDA". FAlRNESS"2013. 16-21.09.2013, Berlin, Germany

Signal Lepton P \& PT registration efficiency

Efficiency of registration Eff is calculated as a ratio of the number of leptons "registered" in a definite momentum region while modeling in PandaRoot to the ones initially generated in the same momentum region in PYTHIA .

- At the low values of PT < 0.1 GeV Eff>1 may be caused by the production of some additional low energetic e- in a result of interaction with the detector environment. At the higher moment values the registration efficiency is evenly falls linearly up to Eff $\approx 0.4-0.6$ and the Eff spectrum stop at $\mathrm{PT}=2.35 \mathrm{GeV}$.
- The values of e^{+} / e^{-}full momentum P Eff sharply grows at the values $\mathrm{P}<0.4 \mathrm{GeV}$ from Eff $=0.6 \rightarrow 1.2$, that can be explained by the reason described above. Then the distribution curve practically linearly falls up to the value of $E f f=0.5$.

Fanda e^{+} / e - distributions over polar θ and azimuth φ angles

PYTHIAG. 4

- θ^{e} - polar angle, φ^{e} - azimuth angle
- $M_{i n v}\left(e^{+}, e^{-}\right)$- invariant mass of the $\mathrm{e}^{+}, \mathrm{e}^{-}$pair
- Both angle distributions repeat the initial distributions obtained in PYTHIA. Distribution over the polar angle θ shows the maximum at the value $\approx 15^{\circ}$, whereupon sharply falls and goes up to the values $\approx 120^{\circ}$. Distribution over the azimuth angle φ shows relatively uniform character with some gaps at $40^{\circ}\left(-40^{\circ}\right)$ and $135^{\circ}\left(-135^{\circ}\right)$.
- $M_{i n v}\left(e^{+}, e^{-}\right)$distribution obtained in PandaRoot is shifted to the left for about 0.25 GeV relatively the PYTHIA one. This fact can be explained by some energy loss of electrons in detector environment, that was demonstrated before, as well as by the presence of some small fraction of additional low energetic electrons that are produced in a result of interaction with the medium of detector.
The current plot needs an additional fiting procedure and more detailed study. Nevertheless the peaks of the both distributions (from PandaRoot and PYTHIA) are rather good coincide.

polar angle θ

Signal Lepton THETA registration efficiency

- Efficiency of registration Eff is calculated as a ratio of the number of leptons "registered" in a definite angle region while modeling in PandaRoot to the ones initially generated in the same angle region in PYTHIA
- The values of these efficiencies have almost the same value Eff ≈ 0.83 (that corresponds to the whole loss of the number of signal events) in the polar angle region $0<\theta<80^{\circ}$ with some fall up to the value Eff ≈ 0.6 close to $\theta \approx$ 7^{0}, with the following uniform (with account of statistical errors) fall to $E f f \approx 0.4$ at $\theta \approx 180^{\circ}$.

Innde Correlation distributions of polar angle θ and momentum Pe^{e}

- The figures are projections of 3-D signal $\mathrm{e}^{+} / \mathrm{e}^{-}$ correlation distributions over polar angle θ and modulus of momentum P
- Left coloumn presents the results, obtained by the full simulation (PANDARoot and GEANT4).
- Right coloumn - the color area presents the results of PYTHIA simulation. The black dots, which correspond to the results, shown in the left column, are superimposed for comparison.
- Both distributions do not significantly differ from each other.
$\overline{\text { Fanda }}$ The main source of background for q qbar $\rightarrow \gamma^{*} \rightarrow l^{+} l-$ are the Minimum-Bias processes:

Some examples:

- Low - PT scattering (gives 68\% of events with the $\boldsymbol{\sigma}=\mathbf{3 3 . 6 8} \mathrm{mb}$);
- Single diffractive (gives 6\% of events with the $\boldsymbol{\sigma}=\mathbf{3 . 4 4} \mathrm{mb}$);
- $q b a r+q \rightarrow l^{+}+l^{-}$(qiues $\underline{0.0000015 \%}$ of events, $\underline{\boldsymbol{\sigma}=4.59 \cdot 10^{-6}} \mathrm{mb}$);

So, we have 1 signal event aginst 10.000 .000 of Mini-bias bkgd $\rightarrow S / B \simeq 10^{-7}$
Mini-bias background is 5 order harder than QCD background

Anna Skachkova. "Simulation of e+e" pairs production ât PANDA". FAIRNESS"2013. 16-21.09.2013, Berlin, Germany

PYTHIAG.4

- The final leptons in background processes
- in PYTHIA come in a result of hadron and meson decays according to Lund fragmentation model,
- in PandaRoot they are produced from the analogous decays laid in Geant program.

Pe - ${ }^{+} / \mathbf{e}^{-}$produced from decays of different particles in detector volume happen to be more energetic in comparison with analogous ones simulated in PYTHIA:
They have $\approx 0.5 \mathrm{GeV}$ higher momentum in transverse plane (Px, Py and PT), and $\approx 1 \mathrm{GeV}$ higher momentum in longitudinal component (Pz and P).

PandâRoot \& Geant 4

[^0]
대붐
 Fanda Angle and $P^{e} / \theta^{e} \mathrm{BKG}$ distributions

Distributions of the background leptons from PandaRoot over the polar angle θ have the similar shape with electrons/positrons, obtained in PYTHIA simulation, but have some clear excess in direction of 5-35 degrees with the peaks on 3-5 and 9-11 degrees.

Distributions of the background electrons/positrons over the zenith angle ϕ have evidently non uniform character with prevalence in the region of 0 and 180 degrees, as well as with holes close to $80(-80)$ and -100 degrees.

Two- dimensional plot of electron/positron distributions over their momentum P and polar angle θ shows the maximum in the region of $0.3-0.4 \mathrm{GeV}$ over momentum and 10-21 degrees over the polar angle.

Cuts for mini-bias and QCD processes (including the signal one)

The following cuts were applied to the minimum bias and QCD sample:

1. selection of events with the only 2 leptons, having $\mathrm{E}_{1}>0.2 \mathrm{GeV}, \mathrm{PT}_{1}>0.2 \mathrm{GeV}$;
2. these 2 leptons have charges of the opposite sign;
3. the vertex of lepton origin lies within the $\mathbf{R}<15 \mathrm{~mm}$ from the interaction point;
4. $\mathrm{M}_{\text {inv }}\left(\ell^{+}+\ell^{-}\right) \geq 0.9 \mathrm{GeV}$;
5. leptons have to satisfy the isolation criteria: the summed energy of particles $\mathrm{E}_{\text {sum }}<0.5 \mathrm{GeV}$ within the cone of $R_{\text {isolation }}=\sqrt{ } \Delta_{\eta}{ }^{2}+\Delta_{\varphi}{ }^{2}=0.2$.

 F̈anda

The plots show the distributions over summarized energy of the final state particles in the cones of radius $\mathbf{R}_{\text {isolation }}=\sqrt{\boldsymbol{\eta}^{2}+\varphi^{2}}$ respect to the (n - pseudorapidity)
upper plot \rightarrow signal events
bottom plot \rightarrow background events

Final S / B ratio $=3.8 / M_{\text {inv }}(I+, I-)>0.9$ S / B ratio $=9 /$ For $M_{\text {inv }}(I+, I-)>1.0$

Applied cuts \& efficiency for Minimum-Bias background events (PYTHIA results)

N of cuts	S/B ratio	Efficiency
$\mathbf{1}$ (exactly 2 leptons with $\mathrm{E}_{1}>0.2 \mathrm{GeV}, \mathrm{PT}_{1}>0.2 \mathrm{GeV}$)	$5.34 * 10.4$	$1.78 * 10.4$
$\mathbf{2}$ (2 leptons are of the opposite sign)	$5.41 * 10.4$	0.98
$\mathbf{3}($ The vertex is within the $R<15 \mathrm{~mm})$	$5.47 * 10.4$	0.99
$\mathbf{4}\left(M_{\text {inv }}\left(I_{1}, I_{2}\right)>0.9\right)$	$9.27 * 10.2$	0.006
$\mathbf{5}$ Isolation	3.8	0.024

표ity
 PandaRoot results

- 100.000 background events were generated in PandaRoot
- $68.803 \mathrm{e}^{+} / \mathrm{e}^{-}$were produced per 10^{5} events.
- The number of background events were no one $\mathbf{e}^{+} / \mathbf{e}^{-}$was registered is 55.448 , i.e. 55.4%.
- The number of background events including only $\mathbf{e}^{+} / \mathbf{e}^{-}$is 29.311, i.e. 29.3%.
- Thus the number of events having 2 and more $\mathbf{e}^{+} / \mathbf{e}^{-}$is 15.241 , i.e. 15.2%.
- The number of events, which are satisfy to the selection criterion - the presence of exactly 2 leptons of different signs with $\mathrm{Pe}>0.2 \mathrm{GeV}$ and $\mathrm{PTe}>$ 0.2 GeV is zero!
- Thus the 1 -st proposed selection criterion gives the background suppression at least for the 5 order of magnitude (in 10^{5} times), better that as was predicted in the simulation on the level of PYTHIA.
- ...But since the cross section difference of background and signal events is 7 orders of magnitude, the more prolonged and deep study of background events is needed with their simulation at much higher statistic, that demand many terabytes of disk space, which are not yet found...

Summary

Monte-Carlo kinematical distributions of individual $\mathbf{e}^{+} / \mathbf{e}^{-}$from the leptons pair production process were presented on the basis of PandaRoot and compared with the initial ones, simulated in PYTHIA6.4 for the case of $E_{\text {beam }}$ $=15 \mathrm{GeV}$
\mathbf{e}^{+} / e^{-r} registration efficiencies over P \& PT, polar angle θ were also shown
Monte-Carlo kinematical distributions of $\mathbf{e}^{+} / \mathbf{e}$ from the minimum-bias process were presented on the basis of PandaRoot and compared with the initial ones, simulated in PYTHIA6. 4

The efficiency of the first proposed criteria for Signal and Background separation was shown on the basis of PandaRoot simulation. A good agreement with the initial PYTHIA estimations was obtained.

Further study of the backgrounds with in PANDARoot is needed

This work was generously supported by the Helmholtz FRRE| Association under grant agreement IK-RU-002

[^0]: Anna Skachkova. "Simulation of e+e" pairs production at̂ PANDA". FAIRNESS"2013. 16-21.09.2013, Berlin, Germany

