Medium-Modification of D Mesons

Four-Quark Condensates and Wilson Coefficients
Extending QCD Sum Rules for D Mesons

T. Buchheim, T. Hilger, B. Kämpfer

Motivation

D Mesons

quark contents:

$D^{+}(c \bar{d})$,	$D^{-}(\bar{c} d)$
$D^{0}(c \bar{u})$,	$\bar{D}^{0}(\bar{c} u)$
$D_{s}^{+}(c \bar{s})$,	$D_{s}^{-}(\bar{c} s)$

[modified figure from desy.de/~ameyer/hq/node38.html]

$$
\begin{aligned}
& m_{D^{+}}=1870 \mathrm{GeV} \\
& m_{D^{0}}=1865 \mathrm{GeV} \\
& m_{D_{s}^{+}}=1968 \mathrm{GeV} \\
& m_{D^{*+}}=2010 \mathrm{GeV} \\
& m_{D^{* 0}}=2007 \mathrm{GeV} \\
& m_{D_{s}^{*+}}=2112 \mathrm{GeV}
\end{aligned}
$$

Why D mesons ?

- exact spectral properties as input for investigations of exotic charmed mesons (X, Y, Z, etc.) in vacuum and medium
- serve as probes of hot and dense nuclear matter via medium modifications
- recent interest [Blaschke et al., PRD 85 (2012)], [He et al., PRL 110 (2013)],
[Tolos et al., arXiv:1306.5426 (2013)], [Yasui et al., PRC 87 (2013)]
- evidence for chiral restoration?

Motivation

Chiral Symmetry Breaking / Restoration in Medium

vacuum - (spontaneous) chiral symmetry breaking: order parameter $\quad\langle\bar{q} q\rangle \neq 0$
further chirally odd condensates (e.g. certain four-quark condensates)
\rightarrow mass splitting of chiral partner mesons
medium modifications:
non-zero temperature (T) and baryon density (n)

$$
\langle\bar{q} q\rangle_{T, n}=\langle\bar{q} q\rangle\left(1-\frac{T^{2}}{8 f_{\pi}^{2}}-\frac{\sigma_{N} n}{m_{\pi}^{2} f_{\pi}^{2}}\right)
$$

\rightarrow signal of chiral symmetry restoration
impact of chirally odd four-quark condensates ?
ρ meson [Hilger et al., PLB 709 (2012)]
$\rightarrow \quad$ translation to \mathbf{D} mesons is possible [Hilger et al., PRC 84 (2011)]

Motivation

Medium Dependence of D Mesons，CBM \＆Panda＠FAIR

Why four－quark condensates ？

－change QCD sum rules（e．g．ρ meson） more precise spectral properties：

D meson mass and width
－medium modifications
evidence for chiral restoration if odd four－quark condensates vanish
enlighten investigations of medium modifications of D mesons by the CBM \＆Panda experiments＠FAIR

QCD Sum Rules

causal current－current correlator $\quad \Pi(q)=\int d^{4} x e^{i q x}\left\langle\mathrm{~T}\left[j(x) j^{\dagger}(0)\right]\right\rangle$

quark d．o．f．

$u \quad d \quad s$
c b
hadronic d．o．f．
$\pi \rho \omega J / \psi a_{1} D B$
p $n \Delta \Lambda$
dispersion relation（from analyticity of $\Pi(q)) \quad \Pi\left(q^{2}\right)=\frac{1}{\pi} \int d s \frac{\operatorname{Im} \Pi(s)}{s-q^{2}}$
$\Pi_{\mathrm{OPE}}\left(q^{2}\right)=\int d s \frac{\operatorname{spectral} \operatorname{density}(s)}{s-q^{2}}$

In-Medium OPE

$$
\begin{aligned}
& \Pi_{\mathrm{OPE}}(q)= \sum_{n} C_{n}(q)\left\langle O_{n}\right\rangle \quad \text { determined [Hilger et al., PRC } 97 \text { (2009)] } \\
&= C_{0}(q) \mathbb{1}+C_{3}(q)\langle\bar{q} q\rangle+C_{4}(q)\left\langle G^{2}\right\rangle+C_{5}(q)\langle\bar{q} G q\rangle \\
&+C_{6, q}(q)\langle\bar{q} q \bar{q} q\rangle+C_{6, G}(q)\left\langle G^{3}\right\rangle+\ldots \\
& \begin{array}{l}
\text { determined for vacuum situations } \\
\text { [Nikolaev, Radyushkin, NPB 213 (1983)] }
\end{array}
\end{aligned}
$$

determined for light mesons [Thomas et al., PRL 95 (2005)]
HERE: qQ mesons
additional condensates containing heavy quarks: e.g. $\langle\bar{q} q \bar{Q} Q\rangle$

OPE：Ioop expansion

$$
\begin{aligned}
\Pi_{\mathrm{OPE}}(q)= & \int d^{4} x e^{i p x}\left\langle\mathrm { T } \left[j(x) j^{\dagger}(0)(\mathbb{1}+\right.\right. \\
& \left.\left.\left.\quad+\frac{(i)^{2}}{2!} \int d^{4} y_{1} d^{4} y_{2} \mathcal{L}_{\mathrm{int}}\left(y_{1}\right) \mathcal{L}_{\mathrm{int}}\left(y_{2}\right)+\ldots\right)\right]\right\rangle \\
= & \Pi_{\alpha_{s}^{0}}(q)+\Pi_{\alpha_{s}^{1}}+\ldots
\end{aligned}
$$

with reduced interaction Lagrangian：

$$
\mathcal{L}_{\mathrm{int}}(y)=g \bar{q}(y) \gamma^{\mu} t^{A} q(y) G_{\mu}^{A}(y)+(q \longrightarrow Q)
$$

OPE: QCD quark propagator

background field method in Fock-Schwinger gauge

$$
S(p)=\sum_{i=0}^{\infty} S^{(i)}(p)
$$

$$
S^{(i)}(p)=-S^{(i-1)}(p) \gamma^{\mu} \tilde{A}_{\mu} S^{(0)}(p), i \geq 1
$$

with derivative operator

$$
\tilde{A}_{\mu}=-\sum_{j=0}^{\infty} g \frac{(-i)^{j}}{j!(j+2)} D_{\vec{\alpha}_{j}} G_{\mu \nu} \partial^{\nu} \partial^{\vec{\alpha}_{j}}
$$

and 2 Wick uncontracted non-local quark operators

OPE

$\Pi_{\mathrm{OPE}}(q)=$

Four－Quark Condensates

$\Pi_{\mathrm{OPE}}(q)=\sum_{k} C_{k}(q)\left\langle\mathcal{O}_{k}\right\rangle$

$$
\left\langle\mathcal{O}_{k}\right\rangle^{h}=4\left\langle\mathcal{O}_{k}\right\rangle_{(\mathbb{1})}^{h}-3\left\langle\mathcal{O}_{k}\right\rangle_{\left(t^{A}\right)}^{h}
$$

k	$\left\langle\mathcal{O}_{k}\right\rangle_{(\mathbb{1})}^{h}$	$\left\langle\mathcal{O}_{k}\right\rangle_{\left(t^{A}\right)}^{h}$

$\frac{\left\langle\mathcal{O}_{k}\right\rangle^{s}}{1 \quad\left\langle: \bar{q} \gamma^{\nu} t^{A} q \sum_{f} \bar{q}_{f} \gamma_{\nu} t^{A} q_{f}:\right\rangle}$
$\langle: \bar{q} q \bar{Q} Q:\rangle$
$\left\langle: \bar{q} \gamma_{\nu} q \bar{Q} \gamma^{\nu} Q:\right\rangle$
$2 \quad\left\langle: \bar{q} \gamma_{\nu} q \bar{Q} \gamma^{\nu} Q:\right\rangle$
$3 \quad\left\langle: \bar{q} \sigma_{\nu \rho} q \bar{Q} \sigma^{\nu \rho} Q:\right\rangle$
$4 \quad\left\langle: \bar{q} \gamma_{5} \gamma_{\nu} q \bar{Q} \gamma_{5} \gamma^{\nu} Q:\right\rangle$
$5 \quad\left\langle: \bar{q} \gamma_{5} q \bar{Q} \gamma_{5} Q:\right\rangle$
$\left\langle: \bar{q} t^{A} q \bar{Q} t^{A} Q:\right\rangle$
$\left\langle: \bar{q} \gamma_{\nu} t^{A} q \bar{Q} \gamma^{\nu} t^{A} Q:\right\rangle$
$6\langle: \bar{q} \psi q \bar{Q} \psi Q:\rangle / v^{2}$
$\left\langle: \bar{q} \sigma_{\nu \rho} t^{A} q \bar{Q} \sigma^{\nu \rho} t^{A} Q:\right\rangle$
$7 \quad\left\langle: \bar{q} \sigma^{\sigma \omega} q \bar{Q} \sigma^{\nu \rho} Q:\right\rangle g_{\nu \omega} v_{\sigma} v_{\rho} / v^{2}$
$8 \quad\left\langle: \bar{q} \gamma_{5} \psi q \bar{Q} \gamma_{5} \psi Q:\right\rangle / v^{2}$
$9 \quad\langle: \bar{q} \psi q \bar{Q} Q:\rangle$
$\left\langle: \bar{q} \gamma_{5} \gamma_{\nu} t^{A} q \bar{Q} \gamma_{5} \gamma^{\nu} t^{A} Q:\right\rangle$
$\left\langle: \bar{q} \gamma_{5} t^{A} q \bar{Q} \gamma_{5} t^{A} Q:\right\rangle$
$\left\langle: \bar{q} \psi t^{A} q \bar{Q} \psi t^{A} Q:\right\rangle / v^{2}$
$\left\langle: \bar{q} \sigma^{\sigma \omega} t^{A} q \bar{Q} \sigma^{\nu \rho} t^{A} Q:\right\rangle g_{\nu \omega} v_{\sigma} v_{\rho} / v^{2}$
$10\langle: \bar{q} q \bar{Q} \psi Q:\rangle$
$\left\langle: \bar{q} \gamma_{5} \psi t^{A} q \bar{Q} \gamma_{5} \psi t^{A} Q:\right\rangle / v^{2}$
$11\left\langle: \bar{q} \sigma^{\sigma \omega} q \bar{Q} \gamma_{5} \gamma^{\nu} Q:\right\rangle \varepsilon_{\alpha \nu \sigma \omega} v^{\alpha} \quad\left\langle: \bar{q} \sigma^{\sigma \omega} t^{A} q \bar{Q} \gamma_{5} \gamma^{\nu} t^{A} Q:\right\rangle \varepsilon_{\alpha \nu \sigma \omega} v^{\alpha}$
$12\left\langle: \bar{q} \gamma_{5} \gamma^{\nu} q \bar{Q} \sigma^{\sigma \omega} Q:\right\rangle \varepsilon_{\alpha \nu \sigma \omega} v^{\alpha} \quad\left\langle: \bar{q} \gamma_{5} \gamma^{\nu} t^{A} q \bar{Q} \sigma^{\sigma \omega} t^{A} Q:\right\rangle \varepsilon_{\alpha \nu \sigma \omega} v^{\alpha}$
$\left\langle: \bar{q} \psi t^{A} q \bar{Q} t^{A} Q:\right\rangle$
$\left\langle: \bar{q} t^{A} q \bar{Q} \psi t^{A} Q:\right\rangle$
$\left\langle: \bar{q} \sigma^{\sigma \omega} t^{A} q \bar{Q} \gamma_{5} \gamma^{\nu} t^{A} Q:\right\rangle \varepsilon_{\alpha \nu \sigma \omega} v^{\alpha}$
$\left\langle: \bar{q} \gamma_{5} \gamma^{\nu} t^{A} q \bar{Q} \sigma^{\sigma \omega} t^{A} Q:\right\rangle \varepsilon_{\alpha \nu \sigma \omega} v^{\alpha}$

k	$\left\langle\mathcal{O}_{k}\right\rangle^{s}$
1	$\left\langle: \bar{q} \gamma^{\nu} t^{A} q \sum_{f} \bar{q}_{f} \gamma_{\nu} t^{A} q_{f}:\right\rangle$

Wilson Coefficients

$$
C_{k}(q)=\sum_{l} \mathcal{C}_{k l} L_{k l}
$$

	$\mathcal{C}_{\text {kl }}^{h}$		$L_{k l}^{h}$	
k	$l=1$	$l=2$	$l=1$	$l=2$

1	$\frac{1}{9} \frac{1}{q^{2}}\left(\frac{q^{2}+m_{Q}^{2}}{\left(q^{2}-m_{Q}^{2}\right)^{2}}+\frac{1}{q^{2}}\right)$	0	1	-
2	$-\frac{1}{36} \frac{1}{q^{2}}\left(\frac{q^{2}-2 m_{Q}^{2}}{\left(q^{2}-m_{Q}^{2}\right)^{2}}+\frac{1}{q^{2}}\right)$	$\frac{1}{108} \frac{1}{q^{2}}\left(\frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{2}}+\frac{1}{q^{4}}\right)$	1	$q^{2}-4 \frac{(v q)^{2}}{v^{2}}$
4	$\frac{1}{36} \frac{1}{q^{2}}\left(\frac{q^{2}+2 m_{Q}^{2}}{\left(q^{2}-m_{Q}^{2}\right)^{2}}+\frac{1}{q^{2}}\right)$	$-\frac{1}{108} \overline{q^{2}}\left(\frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{2}}+\frac{1}{q^{4}}\right)$	1	$q^{2}-4 \frac{(v q)^{2}}{v^{2}}$
5	$\frac{1}{9} \frac{1}{q^{2}}\left(\frac{1}{q^{2}-m_{Q}^{2}}+\frac{1}{q^{2}}\right)$	0	1	-
6	0	$-\frac{1}{27} \frac{1}{q^{2}}\left(\frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{2}}+\frac{1}{q^{4}}\right)$	-	$q^{2}-4 \frac{(v q)^{2}}{v^{2}}$
8	0	$\frac{1}{27} \frac{1}{q^{2}}\left(\frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{2}}+\frac{1}{q^{4}}\right)$	-	$q^{2}-4 \frac{(v q)^{2}}{v^{2}}$
9	0	$-\frac{2}{9} \frac{m_{Q}}{q^{2}\left(q^{2}-m_{Q}^{2}\right)^{2}}$	-	$\frac{(v q)}{v^{2}}$
10	0	$-\frac{1}{9} \frac{m_{Q}}{q^{2}\left(q^{2}-m_{Q}^{2}\right)^{2}}$	-	$\frac{(v q)}{v^{2}}$
11	0	$-\frac{1}{18} \frac{m_{Q}}{q^{2}\left(q^{2}-m_{Q}^{2}\right)^{2}}$	-	$\frac{(v q)}{v^{2}}$

How to handle heavy quarks in four-quark condensates?

4 Approaches:

- neglecting condensates containing heavy quarks, factorization
- factorization and subsequent heavy-quark expansion
- heavy-quark expansion and subsequent factorization
- lattice calculations

Numerical Evaluation

scale of typical OPE contributions

OPE contributions of mass dimension 4 and 5 condensates

OPE contributions of four-quark condensates in three different approaches

Numerical Evaluation

chiral condensate dominates OPE

Summary

- Chiral condensate contributions dominate OPE / sum rules of D mesons
- error-prone HQE and factorization four-quark condensate results do not change OPE significantly either in vacuum or in medium
\rightarrow spectral properties obtained in [Hilger et al., PRC 79 (2009)] hold
- four-quark condensates as order parameters of chiral symmetry restoration addressed by chiral partner sum rules (Weinberg-type sum rules) in future work

Heavy-Quark Expansion (HQE)

heavy two-quark condensate:
[Generalis, Broadhurst, PLB139 (1984)]

leading order: $\quad\langle\bar{Q} Q\rangle=-\frac{g^{2}}{48 \pi^{2} m_{Q}}\left\langle G^{2}\right\rangle+\mathcal{O}\left(1 / m_{Q}^{3}\right)$
heavy-light four-quark condensate:

leading order:
$\left\langle\bar{q} \gamma_{\nu} t^{A} q \sum_{f} \bar{q}_{f} \gamma^{\nu} t^{A} q_{f}\right\rangle,\left\langle\bar{q} \psi t^{A} q \sum_{f} \bar{q}_{f} \psi t^{A} q_{f}\right\rangle / v^{2},\left\langle\bar{q} t^{A} q \sum_{f} \bar{q} f \psi t^{A} q_{f}\right\rangle$
with HQE coefficiens of order $1 / m_{Q}^{0}$

Factorization of Four-Quark Condensats

colorless hadronic states and the QCD vacuum

vacuum

$\left\langle\bar{q} \Gamma_{1} t^{A} q \bar{q} \Gamma_{2} t^{A} q\right\rangle=\sum_{n} c_{n}\left(\Gamma_{1}, \Gamma_{2}, t^{A}\right)\langle\bar{q} q \mid n\rangle\langle n \mid \bar{q} q\rangle$

$$
\approx c_{0}\left(\Gamma_{1}, \Gamma_{2}, t^{A}\right)\langle\bar{q} q\rangle^{2}
$$

medium
reduction of light four-quark condensates:
$\left\langle\bar{q} \Gamma_{1} t^{A} q \bar{q} \Gamma_{2} t^{A} q\right\rangle=a\langle\bar{q} q\rangle^{2}+b\langle\bar{q} q\rangle\langle\bar{q} \psi q\rangle+c\langle\bar{q} \psi q\rangle^{2}$
reduction of heavy-light four-quark condensates:

$$
\begin{aligned}
\left\langle\bar{q} \Gamma_{1} t^{A} q \bar{Q} \Gamma_{2} t^{A} Q\right\rangle= & A\langle\bar{q} q\rangle\langle\bar{Q} Q\rangle+B\langle\bar{q} \psi q\rangle\langle\bar{Q} Q\rangle \\
& +C\langle\bar{q} q\rangle\langle\bar{Q} \psi Q\rangle+D\langle\bar{q} \psi q\rangle\langle\bar{Q} \psi Q\rangle
\end{aligned}
$$

Wilson Coefficients

$C_{k}(q)=\sum_{l} \mathcal{C}_{k l} L_{k l}$

	$\mathcal{C}_{k l}^{s}$			$L_{k l}^{s}$		
k	$l=1$	$l=2$	$l=3$	$l=1$	$l=2$	$l=3$
1	$-\frac{1}{3} \frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{2}}\left(1-\frac{q^{2}}{q^{2}-m_{Q}^{2}}\right)^{2}$	$\frac{2}{9} \frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{3}}$	$-\frac{8}{3} \frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{4}}$	1	$q^{2}-4 \frac{(v q)^{2}}{v^{2}}$	$\frac{3}{8} q^{4}-2 \frac{q^{2}(v q)^{2}}{v^{2}}+\frac{(v q)^{4}}{v^{4}}$
2	0	$-\frac{4}{9} \frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{3}}$	$\frac{8}{3} \frac{1}{\left(q^{2}-m_{Q}^{2}\right)^{4}}$	-	$q^{2}-4 \frac{(v q)^{2}}{v^{2}}$	$q^{4}-7 \frac{q^{2}(v q)^{2}}{v^{2}}+6 \frac{(v q)^{4}}{v^{4}}$
3	0	$-\frac{4}{3} \frac{m_{Q}}{\left(q^{2}-m_{Q}^{2}\right)^{3}}$	$\frac{8}{3} \frac{m_{Q}}{\left(q^{2}-m_{Q}^{2}\right)^{4}}$	-	$\frac{(v q)}{v^{2}}$	$\frac{(v q)}{v^{2}}\left(q^{2}-\frac{(v q)^{2}}{v^{2}}\right)$
4	0	$\frac{2}{9} \frac{1}{q^{6}}$	$-\frac{8}{3} \frac{1}{q^{8}}$	-	$q^{2}-4 \frac{(v q)^{2}}{v^{2}}$	$\frac{3}{8} q^{4}-2 \frac{q^{2}(v q)^{2}}{v^{2}}+\frac{(v q)^{4}}{v^{4}}$
5	0	$-\frac{4}{9} \frac{1}{q^{6}}$	$\frac{8}{3} \frac{1}{q^{8}}$		$q^{2}-4 \frac{(v q)^{2}}{v^{2}}$	$q^{4}-7 \frac{q^{2}(v q)^{2}}{v^{2}}+6 \frac{(v q)^{4}}{v^{4}}$

