Medium-Modification of D Mesons

Four-Quark Condensates and Wilson Coefficients Extending QCD Sum Rules for D Mesons

T. Buchheim, T. Hilger, B. Kämpfer

Mitglied der Helmholtz-Gemeinschaft

Motivation D Mesons

quark contents:

 $D^{+} (c\bar{d}), D^{-} (\bar{c}d) \\D^{0} (c\bar{u}), \bar{D}^{0} (\bar{c}u) \\D^{+}_{s} (c\bar{s}), D^{-}_{s} (\bar{c}s)$

[[]modified figure from desy.de/~ameyer/hq/node38.html]

Why D mesons ?

- exact spectral properties as input for investigations of exotic charmed mesons (X, Y, Z, etc.) in vacuum and medium
- serve as probes of hot and dense nuclear matter via medium modifications
 - recent interest [Blaschke et al., PRD 85 (2012)], [He et al., PRL 110 (2013)],

[Tolos et al., arXiv:1306.5426 (2013)], [Yasui et al., PRC 87 (2013)]

– evidence for chiral restoration ?

Motivation Chiral Symmetry Breaking / Restoration in Medium

vacuum – (spontaneous) chiral symmetry breaking:

order parameter $\langle \bar{q}q \rangle \neq 0$

further chirally odd condensates (e.g. certain four-quark condensates)

mass splitting of chiral partner mesons

medium modifications:

non-zero temperature (T) $\langle \bar{q}q \rangle_{T,n} = \langle \bar{q}q \rangle \left(1 - \frac{T^2}{8f_{\pi}^2} - \frac{\sigma_N n}{m_{\pi}^2 f_{\pi}^2}\right)$ and baryon density (n)

impact of chirally odd four-quark condensates ?

ho meson [Hilger et al., PLB 709 (2012)]

Motivation

Medium Dependence of D Mesons, CBM & Panda @ FAIR

Why four-quark condensates ?

change QCD sum rules (e.g. p meson)
 more precise spectral properties:
 D meson mass and width

medium modifications

evidence for chiral restoration if odd

four-quark condensates vanish

 enlighten investigations of medium modifications of D mesons by the CBM & Panda experiments @ FAIR

QCD Sum Rules

Slide 5

causal current-current correlator
$$\Pi(q) = \int d^4x \, e^{iqx} \langle \mathrm{T}\left[j(x)j^{\dagger}(0)\right] \rangle$$

dispersion relation (from analyticity of
$$\Pi(q)$$
) $\Pi(q^2) = \frac{1}{\pi} \int ds \frac{\mathrm{Im}\Pi(s)}{s-q^2}$

$$\Pi_{\rm OPE}(q^2) = \int ds \frac{\text{spectral density}(s)}{s - q^2}$$

Mitglied der Helmholtz-Gemeinschaft

In-Medium OPE

determined [Hilger et al., PRC 97 (2009)] $\Pi_{\rm OPE}(q) = \sum C_n(q) \langle O_n \rangle$ n $= C_0(q)\mathbb{1} + C_3(q)\langle \bar{q}q \rangle + C_4(q)\langle G^2 \rangle + C_5(q)\langle \bar{q}Gq \rangle$ $+ C_{6,q}(q) \langle \bar{q}q\bar{q}q \rangle + C_{6,G}(q) \langle G^3 \rangle + \dots$ determined for vacuum situations [Nikolaev, Radyushkin, NPB 213 (1983)] determined for light mesons [Thomas et al., PRL 95 (2005)]

HERE: qQ mesons additional condensates containing heavy quarks: e.g. $\langle \bar{q}q\bar{Q}Q\rangle$

OPE: loop expansion

$$\Pi_{\text{OPE}}(q) = \int d^4x \, e^{ipx} \langle \mathcal{T} \left[j(x) j^{\dagger}(0) \left(\mathbb{1} + \frac{(i)^2}{2!} \int d^4y_1 d^4y_2 \mathcal{L}_{\text{int}}(y_1) \mathcal{L}_{\text{int}}(y_2) + \dots \right) \right] \rangle$$
$$= \Pi_{\alpha_s^0}(q) + \Pi_{\alpha_s^1} + \dots$$

with reduced interaction Lagrangian:

$$\mathcal{L}_{\rm int}(y) = g\bar{q}(y)\gamma^{\mu}t^{A}q(y)G^{A}_{\mu}(y) + (q \longrightarrow Q)$$

OPE: QCD quark propagator

background field method in Fock-Schwinger gauge

$$S(p) = \sum_{i=0}^{\infty} S^{(i)}(p) \qquad S^{(i)}(p) = -S^{(i-1)}(p)\gamma^{\mu}\tilde{A}_{\mu}S^{(0)}(p), \ i \ge 1$$

with derivative operator

 ∞

$$\tilde{A}_{\mu} = -\sum_{j=0}^{\infty} g \frac{(-i)^{j}}{j!(j+2)} D_{\vec{\alpha}_{j}} G_{\mu\nu} \partial^{\nu} \partial^{\vec{\alpha}_{j}}$$

free quark propagator

and 2 Wick uncontracted non-local quark operators

construction of condensates

Mitglied der Helmholtz-Gemeinschaft

OPE

Mitglied der Helmholtz-Gemeinschaft

Mitglied der Helmholtz-Gemeinschaft

Four-Quark Condensates

teres to the the teres of							
•	$\downarrow \qquad \qquad$	$\langle e \rangle^h = 4 \langle \mathcal{O}_k \rangle^h_{(1)} - 3 \langle \mathcal{O}_k \rangle^h_{(t^A)}$	-	• 000			
k	$\langle \mathcal{O}_k angle_{(\mathbb{1})}^h$	$\langle \mathcal{O}_k angle_{(t^A)}^h$		k	$\langle \mathcal{O}_k angle^s$		
1	$\langle:\bar{q}q\bar{Q}Q:\rangle$	$\langle :\bar{q}t^{A}q\bar{Q}t^{A}Q:\rangle$		1	$\langle :\bar{q}\gamma^{\nu}t^{A}q\sum\bar{q}_{f}\gamma_{\nu}t^{A}q_{f}:\rangle$		
2	$\langle:\bar{q}\gamma_{\nu}q\bar{Q}\gamma^{\nu}Q:\rangle$	$\langle :\bar{q}\gamma_{\nu}t^{A}q\bar{Q}\gamma^{\nu}t^{A}Q:\rangle$		9	$\int \frac{f}{\bar{\alpha}_{ab}t^{A}} \frac{1}{\bar{\alpha}_{ab}t^{A}} \frac{1}{$		
3	$\langle:\bar{q}\sigma_{\nu\rho}q\bar{Q}\sigma^{\nu\rho}Q:\rangle$	$\langle:\bar{q}\sigma_{\nu\rho}t^{A}q\bar{Q}\sigma^{\nu\rho}t^{A}Q:\rangle$ medium	m	2	$\langle . q \psi \iota \ q \sum_{f} q f \psi \iota \ q f . / \ell $		
4	$\langle:\bar{q}\gamma_5\gamma_\nu q\bar{Q}\gamma_5\gamma^\nu Q:\rangle$	$\langle:\bar{q}\gamma_5\gamma_{\nu}t^Aq\bar{Q}\gamma_5\gamma^{\nu}t^AQ:\rangle$		3	$\langle:\bar{q}t^Aq\sum\bar{q}_f\psi t^Aq_f:\rangle$		
5	$\langle:\bar{q}\gamma_5 q\bar{Q}\gamma_5 Q:\rangle$	$\langle:\bar{q}\gamma_5 t^A q \bar{Q}\gamma_5 t^A Q:\rangle$			$f \qquad \qquad$		
6	$\langle:\bar{q}\psi q\bar{Q}\psi Q:\rangle/v^2$	$\langle:\bar{q}\psi t^A q \bar{Q}\psi t^A Q:\rangle/v^2$		4	$\langle :Q\gamma^{\nu}t^{\mu}Q\sum_{f}q_{f}\gamma_{\nu}t^{\mu}q_{f}:\rangle$		
7	$\langle:\bar{q}\sigma^{\sigma\omega}q\bar{Q}\sigma^{\nu\rho}Q:\rangle g_{\nu\omega}v_{\sigma}v_{\rho}/v^2$	$\langle:\bar{q}\sigma^{\sigma\omega}t^Aq\bar{Q}\sigma^{\nu\rho}t^AQ:\rangle g_{\nu\omega}v_\sigma v_\rho/v^2$		5	$\langle :\bar{Q}\psi t^A Q \sum \bar{q}_f \psi t^A q_f : \rangle / v^2$		
8	$\langle:\bar{q}\gamma_5\psi q\bar{Q}\gamma_5\psi Q:\rangle/v^2$	$\langle:\bar{q}\gamma_5\psi t^Aq\bar{Q}\gamma_5\psi t^AQ:\rangle/v^2$		0	f		
9	$\langle:\bar{q}\psi q\bar{Q}Q:\rangle$	$\langle:\bar{q}\psi t^Aq\bar{Q}t^AQ:\rangle$		6	$\langle :Qt^{+}Q\sum_{f}q_{f}\psi t^{+}q_{f}:\rangle$		
10	$\langle:\bar{q}q\bar{Q}\psi Q:\rangle$	$\langle:\bar{q}t^Aq\bar{Q}\psi t^AQ:\rangle$					
11	$\langle:\bar{q}\sigma^{\sigma\omega}q\bar{Q}\gamma_5\gamma^{\nu}Q:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$	$\langle:\bar{q}\sigma^{\sigma\omega}t^Aq\bar{Q}\gamma_5\gamma^{\nu}t^AQ:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$					
12	$\langle:\bar{q}\gamma_5\gamma^{\nu}q\bar{Q}\sigma^{\sigma\omega}Q:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$	$\langle:\bar{q}\gamma_5\gamma^{\nu}t^Aq\bar{Q}\sigma^{\sigma\omega}t^AQ:\rangle\varepsilon_{\alpha\nu\sigma\omega}v^{\alpha}$		DPE			

concept

Wilson Coefficients

$C_k(q) = \sum_l C_{kl} L_{kl}$							
	C_k^\prime	L^{h}_{kl}					
k	l = 1	l = 2	l = 1	l = 2			
1	$\frac{1}{9} \frac{1}{q^2} \left(\frac{q^2 + m_Q^2}{(q^2 - m_Q^2)^2} + \frac{1}{q^2} \right)$	0	1				
2	$-\frac{1}{36}\frac{1}{q^2}\left(\frac{q^2-2m_Q^2}{(q^2-m_Q^2)^2}+\frac{1}{q^2}\right)$	$\frac{1}{108} \frac{1}{q^2} \left(\frac{1}{(q^2 - m_Q^2)^2} + \frac{1}{q^4} \right)$	1	$q^2-4\frac{(vq)^2}{v^2}$			
4	$\frac{1}{36} \frac{1}{q^2} \left(\frac{q^2 + 2m_Q^2}{(q^2 - m_Q^2)^2} + \frac{1}{q^2} \right)$	$-\frac{1}{108}\frac{1}{q^2}\left(\frac{1}{(q^2-m_Q^2)^2}+\frac{1}{q^4}\right)$	1	$q^2-4\frac{(vq)^2}{v^2}$			
5	$\frac{1}{9}\frac{1}{q^2}\left(\frac{1}{q^2-m_Q^2}+\frac{1}{q^2}\right)$	0	1				
6	0	$-\frac{1}{27}\frac{1}{q^2}\left(\frac{1}{(q^2-m_Q^2)^2}+\frac{1}{q^4}\right)$		$q^2-4\frac{(vq)^2}{v^2}$			
8	0	$\frac{1}{27} \frac{1}{q^2} \left(\frac{1}{(q^2 - m_Q^2)^2} + \frac{1}{q^4} \right)$		$q^2-4\frac{(vq)^2}{v^2}$			
9	0	$-\frac{2}{9}\frac{m_Q}{q^2(q^2-m_Q^2)^2}$		$\frac{(vq)}{v^2}$			
10	0	$-\frac{1}{9}\frac{m_Q}{q^2(q^2-m_Q^2)^2}$		$\frac{(vq)}{v^2}$			
11	0	$-\frac{1}{18}\frac{m_Q}{q^2(q^2-m_Q^2)^2}$		$\frac{(vq)}{v^2}$			

 $\Pi_{\rm OPE}(q) = \sum C_k(q) \langle \mathcal{O}_k \rangle$ k

	\mathcal{C}^h_{kl}	L_{kl}^h		
k	l = 1	l = 2	l = 1	l = 2
1	$\frac{1}{9} \frac{1}{q^2(q^2-m_Q^2)}$	0	1	_
2	$\frac{1}{18} \frac{1}{q^2(q^2 - m_Q^2)}$	$-\frac{1}{54}\frac{1}{q^4(q^2-m_Q^2)}$	1	$q^2 - 4\frac{(vq)^2}{v^2}$
3	$-\frac{1}{18}\frac{1}{q^2(q^2-m_Q^2)}$	0	1	
4	$-\frac{1}{18}\frac{1}{q^2(q^2-m_Q^2)}$	$\frac{1}{54} \frac{1}{q^4(q^2 - m_Q^2)}$	1	$q^2 - 4 \frac{(vq)^2}{v^2}$
5	$\frac{1}{9} \frac{1}{q^2(q^2 - m_Q^2)}$	0	1	
6	0	$\frac{2}{27} \frac{1}{q^4(q^2 - m_Q^2)}$		$q^2-4\frac{(vq)^2}{v^2}$
8	0	$-\frac{2}{27}\frac{1}{q^4(q^2-m_Q^2)}$		$q^2-4\frac{(vq)^2}{v^2}$
9	0	$-\frac{1}{9}\frac{m_Q}{q^4(q^2-m_Q^2)}$		$\frac{(vq)}{v^2}$
10	0	$-\frac{2}{9}\frac{m_Q}{q^4(q^2-m_Q^2)}$		$\frac{(vq)}{v^2}$
11	0	$-\frac{1}{18}\frac{m_Q}{q^4(q^2-m_Q^2)}$		$\frac{(vq)}{v^2}$

Mitglied der Helmholtz-Gemeinschaft

T. Buchheim, T. Hilger, B. Kämpfer | Institute of Radiation Physics | Hadron Physics Division

How to handle heavy quarks in four-quark condensates? 4 Approaches:

neglecting condensates containing heavy quarks, factorization

factorization and subsequent heavy-quark expansion

heavy-quark expansion and subsequent factorization

lattice calculations

Numerical Evaluation

OPE contributions of four-quark condensates in three different approaches

Numerical Evaluation

chiral condensate dominates OPE → [Hilger et al., PRC 79 (2009)] holds

Mitglied der Helmholtz-Gemeinschaft

Summary

Chiral condensate contributions dominate OPE / sum rules of D mesons

- error-prone HQE and factorization four-quark condensate results do not change
 OPE significantly either in vacuum or in medium
 - ► spectral properties obtained in [Hilger et al., PRC 79 (2009)] hold
- four-quark condensates as order parameters of chiral symmetry restoration addressed by chiral partner sum rules (Weinberg-type sum rules) in future work

Heavy-Quark Expansion (HQE)

 $\begin{aligned} & \text{heavy two-quark condensate:} \qquad & [\text{Generalis, Broadhurst, PLB139 (1984)}] \\ & \langle \bar{Q}Q \rangle = \underbrace{\bigotimes}_{\otimes} \langle G^2 \rangle + \underbrace{\bigotimes}_{\otimes} \langle G^3 \rangle + \underbrace{\bigotimes}_{\otimes} \langle G^3 \rangle + \underbrace{\bigotimes}_{f} \langle \sum_f \bar{q}_f q_f \sum_{f'} \bar{q}_{f'} q_{f'} \rangle + \dots \\ & \text{leading order:} \qquad & \langle \bar{Q}Q \rangle = -\frac{g^2}{48\pi^2 m_Q} \langle G^2 \rangle + \mathcal{O}(1/m_Q^3) \end{aligned}$

heavy-light four-quark condensate:

$$\langle \bar{q}Aq\bar{Q}BQ\rangle = (\downarrow \downarrow) \langle \bar{q}q \sum_{f} \bar{q}_{f}q_{f} \rangle + (\downarrow \downarrow) \langle \bar{q}qG^{2} \rangle + \dots$$

leading order:

$$\langle \bar{q}\gamma_{\nu}t^{A}q\sum_{f}\bar{q}_{f}\gamma^{\nu}t^{A}q_{f}\rangle, \langle \bar{q}\psi t^{A}q\sum_{f}\bar{q}_{f}\psi t^{A}q_{f}\rangle/v^{2}, \langle \bar{q}t^{A}q\sum_{f}\bar{q}_{f}\psi t^{A}q_{f}\rangle$$

with HQE coefficiens of order $1/m_Q^0$

DRESDEN

Factorization of Four-Quark Condensats

colorless hadronic states and the QCD vacuum

vacuum

$$\langle \bar{q}\Gamma_1 t^A q \bar{q}\Gamma_2 t^A q \rangle = \sum_n c_n (\Gamma_1, \Gamma_2, t^A) \langle \bar{q}q | n \rangle \langle n | \bar{q}q \rangle$$
$$\approx c_0 (\Gamma_1, \Gamma_2, t^A) \langle \bar{q}q \rangle^2$$

medium

reduction of light four-quark condensates:

$$\langle \bar{q}\Gamma_1 t^A q \bar{q}\Gamma_2 t^A q \rangle = a \langle \bar{q}q \rangle^2 + b \langle \bar{q}q \rangle \langle \bar{q}\psi q \rangle + c \langle \bar{q}\psi q \rangle^2$$

reduction of heavy-light four-quark condensates:

$$\begin{split} \langle \bar{q}\Gamma_1 t^A q \bar{Q}\Gamma_2 t^A Q \rangle &= A \langle \bar{q}q \rangle \langle \bar{Q}Q \rangle + B \langle \bar{q}\psi q \rangle \langle \bar{Q}Q \rangle \\ &+ C \langle \bar{q}q \rangle \langle \bar{Q}\psi Q \rangle + D \langle \bar{q}\psi q \rangle \langle \bar{Q}\psi Q \rangle \end{split}$$

Wilson Coefficients

 $\Pi_{\rm OPE}(q) = \sum_{i} C_k(q) \langle \mathcal{O}_k \rangle$ k

$C_k(q) =$	\sum_{l}	$\int C_{kl} L_{kl}$					К		
000+		\mathcal{C}^{s}_{kl}				L_{kl}^{s}			
	k	l = 1	l = 2		l = 3	l = 1	l=2	l = 3	
	1	$-\frac{1}{3}\frac{1}{(q^2-m_Q^2)^2}\left(1-\frac{q^2}{q^2-m_Q^2}\right)$	$\frac{2}{9} \frac{2}{(q^2 - m_Q^2)}$)3	$-\frac{8}{3}\frac{1}{(q^2-m_Q^2)^4}$	1	$q^2 - 4\frac{(vq)^2}{v^2}$	$\frac{3}{8}q^4 - 2\frac{q^2(vq)^2}{v^2} + \frac{(vq)^4}{v^4}$	
	2	0	$-\frac{4}{9}\frac{1}{(q^2-m^2)}$	$\frac{2}{2}$ 3	$\frac{8}{3} \frac{1}{(q^2 - m_O^2)^4}$		$q^2 - 4\frac{(vq)^2}{v^2}$	$q^4 - 7\frac{q^2(vq)^2}{v^2} + 6\frac{(vq)^4}{v^4}$	
	3	0	$-\frac{4}{3}\frac{m_Q}{(q^2-m_Q^2)}$	$\frac{2}{Q}^{3}$	$\frac{8}{3} \frac{m_Q}{(q^2 - m_Q^2)^4}$		$\frac{(vq)}{v^2}$	$\frac{(vq)}{v^2}\left(q^2 - \frac{(vq)^2}{v^2}\right)$	
	4	0	$\frac{2}{9}\frac{1}{q^6}$		$-\frac{8}{3}\frac{1}{q^8}$		$q^2 - 4\frac{(vq)^2}{v^2}$	$\frac{3}{8}q^4 - 2\frac{q^2(vq)^2}{v^2} + \frac{(vq)^4}{v^4}$	
	5	0	$-\frac{4}{9}\frac{1}{q^6}$		$\frac{8}{3}\frac{1}{q^8}$		$q^2 - 4\frac{(vq)^2}{v^2}$	$q^4 - 7\frac{q^2(vq)^2}{v^2} + 6\frac{(vq)^4}{v^4}$	
***		\mathcal{C}^{s}_{kl}			L_{kl}^s				
	k	l = 1	l = 2	l = 1	l = 2				
\checkmark	1	$\frac{1}{3} \frac{1}{(q^2 - m_Q^2)^2} \left(2 - \frac{q^2}{q^2 - m_Q^2} \right)$	$-\frac{1}{9}\frac{1}{(q^2-m_Q^2)^3}$	1	$q^2 - 4\frac{(vq)^2}{v^2}$				
	2	0	$\frac{2}{9} \frac{1}{(q^2 - m_Q^2)^3}$		$q^2 - 4\frac{(vq)^2}{v^2}$				
	3	0	$\frac{2}{3} \frac{m_Q}{(q^2 - m_Q^2)^3}$		$\frac{(vq)}{v^2}$				
	4	$rac{1}{3}rac{1}{q^4}$	$-\frac{1}{9}\frac{1}{q^6}$	1	$q^2 - 4\frac{(vq)^2}{v^2}$				
	5	0	$\frac{2}{9}\frac{1}{q^6}$		$q^2 - 4\frac{(vq)^2}{v^2}$	C	concept	HZDR	

Mitglied der Helmholtz-Gemeinschaft