<u>Microscopic-macroscopic method for</u> <u>studying single-particle level density of</u> <u>superheavy nuclei</u>

> A. N. Bezbakh<sup>1</sup>, G.G. Adamian<sup>1</sup>, N.V. Antonenko<sup>1</sup>, T.M. Shneidman<sup>1,2</sup>,

<sup>1</sup>Joint Institute for Nuclear Research, Dubna, Russia <sup>2</sup> Institute of Theoretical Physics, CAS, Beijing, China

Aims: -to investigate the nuclear level density of superheavy nuclei in the α-decay chains of <sup>296,298,300</sup>120
 -to establish the dependence of level density on shell effects in the region of superheavy nuclei.

# **Content:**

- Scheme of Calculations
- Modified Two Center Shell Model
- Formalism of Level Density Calculations
- Results of calculations
- Conclusions

# **Scheme of the Calculations:**

- Potential Energy Surface (PES) is obtained by the Strutinsky method using the modified Two Center Shell Model (TCShM).
- The single particle spectrum is obtained for the potentials corresponding to minimum of PES.
- The nuclear level density is defined using the statistical approach (saddle point method). The effects of pairing is included and studied in the BCS approximation.
- The level density parameters are extracted by fitting the obtained numerical solution by the Fermi Gas expression.
- The dependence of the level density parameters on the shell effects is determined.
- The dependence of the level density parameter on N and Z is established. The minima in this dependence correspond to the closed shells or sub-shell nuclei.

#### **Two Center Shell Model** (J. Maruhn and W. Greiner, Z. Phys. 251 (1972) 431)



#### **Modification of the two center shell model**

$$H = -\frac{\hbar^2 V^2}{2m_0} + V(\rho, z) + V_{LS}(r, p, s) + V_{L^2}(r, l)$$

We choose the shape parametrization adopted in the TCSM



Other variables are fixed.



#### **Modification of the two center shell model**

The potential energy is calculated as

 $U(Z, A, \lambda, \beta) = U_{LDM}(Z, A, \lambda, \beta) + \delta U_{mic}(Z, A, \lambda, \beta)$ 

The first term is macroscopic energy (the Coulomb and surface energies) calculated with the liquid drop model. The second term is a microscopic energy. It contains the shell  $E_{sh}$  and pairing corrections.

The momentum-dependent part of the Hamiltonian consists of the sl- and l<sup>2</sup>-like terms with the parameters  $\kappa_{n,p}$  and  $\mu_{n,p}$ , respectively. In order to improve the description of the nuclear spins and parities, we introduce the weak dependence on (N–Z) in the  $\kappa_{n,p}$  and  $\mu_{n,p}$ 

 $\kappa_n$ =-0.076 + 0.0058 (N-Z) - 6.53×10<sup>-5</sup> (N-Z)<sup>2</sup> + 0.002A<sup>1/3</sup>  $\mu_n$ =1.598 - 0.0295 (N-Z) + 3.036×10<sup>-4</sup> (N-Z)<sup>2</sup> - 0.095A<sup>1/3</sup>

 $\kappa_p = 0.0383 + 0.00137 (N-Z) - 1.22 \times 10^{-5} (N-Z)^2 - 0.003 A^{1/3} \mu_p = 0.335 + 0.01 (N-Z) - 9.367 \times 10^{-5} (N-Z)^2 + 0.003 A^{1/3}$ 

# **Results of TCSM Calculations for <sup>300</sup>120 chain.**

|         | ∆_n  | $\lambda_{fn}$ | ∆_р  | $\lambda_{fp}$ | β    | λ    | E_sh     | Ζ   | A   |
|---------|------|----------------|------|----------------|------|------|----------|-----|-----|
| -       | 0.67 | 50.08          | 0.52 | 42.12          | 1.28 | 1.18 | -4.4373  | 100 | 260 |
| prolate | 0.67 | 50.05          | 0.62 | 42.33          | 1.28 | 1.18 | -3.5330  | 102 | 264 |
|         | 0.65 | 50.03          | 0.63 | 42.39          | 1.22 | 1.16 | -3.4229  | 104 | 268 |
|         | 0.59 | 49.92          | 0.48 | 42.22          | 1.08 | 1.14 | -4.2856  | 106 | 272 |
|         | 0.58 | 49.75          | 0.45 | 42.40          | 1.00 | 1.12 | -5.3513  | 108 | 276 |
|         | 0.58 | 49.60          | 0.45 | 42.58          | 0.96 | 1.10 | -4.8611  | 110 | 280 |
|         | 0.45 | 49.37          | 0.46 | 42.20          | 0.86 | 1.06 | -6.7046  | 112 | 284 |
|         | 0.65 | 48.67          | 0.45 | 41.92          | 1.04 | 1.02 | -4.8579  | 114 | 288 |
|         | 0.57 | 49.24          | 0.45 | 42.94          | 1.06 | 1.04 | -5.4617  | 116 | 292 |
|         | 0.45 | 49.25          | 0.45 | 42.77          | 1.02 | 1.04 | -6.7534  | 118 | 296 |
|         | 0.45 | 49.30          | 0.45 | 42.63          | 0.92 | 1.02 | -8.7417  | 120 | 300 |
|         | 0.45 | 49.41          | 0.62 | 43.24          | 0.92 | 1.00 | -8.9565  | 122 | 304 |
|         | 0.45 | 49.08          | 0.45 | 43.00          | 0.90 | 0.98 | -10.4585 | 124 | 308 |
|         | 0.45 | 49.44          | 0.45 | 43.38          | 0.90 | 0.98 | -9.1472  | 126 | 312 |
|         | 0.45 | 49.39          | 0.62 | 43.50          | 0.90 | 0.98 | -6.3110  | 128 | 316 |
|         | 0.45 | 49.42          | 0.75 | 43.49          | 0.90 | 0.98 | -4.5176  | 130 | 320 |

oblate

#### **Shell Corrections**



Strong shell effects at Z = 120-126 and N = 184. Shell effects at Z = 108 and Z = 114 are weaker.

#### **The Q<sub>α</sub> values for α-emission for even-Z (b) and odd-Z (a)** (A.N. Kuzmina (Bezbakh) et al., Phys. Rev. C85, 014319 (2012))

 $Q_{\alpha}(Z, A) = B(Z, A) + 28.296 - B(Z - 2, A - 4)$ 



# **★**Z=114, N=172-176 **★**N=184, Z=120-126

The calculated  $Q_{\alpha}$  are in a good, within 0.3 MeV, agreement with the available experimental data.

1.Yu.Ts. Oganessian, J. Phys. G **34**, R165 (2007) *et al.*, Phys. Rev. Lett. **104**, 142502 (2010);

S. Hofmann *et al.*, Eur. Phys. J. A **32**, 251 (2007) / Lec. Notes Phys. **764**, 203 (2009); Radiochim. Acta **99**, 405 (2011);

3.L. Stavsetra *et al.*, Phys. Rev. Lett. **103**, 132502 (2009).

# **Formalism of Level Density Calculations**

The level density is defined as

$$\omega(N, Z, E) = \sum_i \delta(N - N_i) \delta(Z - Z_i) \delta(E - E_i)$$

where

$$\hat{N}|i>=N_i|i>, \quad \hat{Z}|i>=Z_i|i>, \quad \hat{H}|i>=E_i|i>$$

The Laplace transformation of level density is the statistical sum

$$Q(\alpha_N, \alpha_Z, \beta) = \int_0^\infty dN \int_0^\infty dZ \int_0^\infty dE \ \omega(N, Z, E) e^{-\beta E + \alpha_N N + \alpha_Z Z}$$
$$= \sum_i e^{-\beta E_i + \alpha_N N_i + \alpha_Z Z_i} \equiv \sum_i < i |e^{-\beta \hat{H} + \alpha_N \hat{N} + \alpha_Z \hat{Z}}|i>$$

The inverse Laplace transformation of statistical sum gives the level density

$$\omega(N, Z, E) = \frac{1}{(2\pi i)^3} \int_{\beta'-i\infty}^{\beta'+i\infty} d\beta \int_{\alpha'_N-i\infty}^{\alpha'_N+i\infty} d\alpha_N \int_{\alpha'_Z-i\infty}^{\alpha'_Z+i\infty} d\alpha_Z e^{S(\alpha_N, \alpha_Z, \beta)}$$
$$S(\alpha_N, \alpha_Z, \beta) = \beta E - \alpha_N N - \alpha_Z Z + \ln Q(\alpha_N, \alpha_Z, \beta)$$

### Method of the saddle point (method of steepest descent)

is a technique used to approximate the integrals

$$F(\lambda) = \int_C f(\mathbf{z}) e^{\lambda S(\mathbf{z})} dz_1 dz_2 \dots dz_n \approx \left(\frac{2\pi}{\lambda |S''(\mathbf{z_0})|}\right)^{n/2} e^{\lambda S(\mathbf{z_0})} f(\mathbf{z_0})$$

where  $z_0$  is the saddle point defined by the condition

$$S'(\mathbf{z_0}) = 0$$

and





In the case of level density the saddle point coordinates are defined by the equations:

$$\frac{\partial S(\alpha_N, \alpha_Z, \beta)}{\partial \beta} = 0$$

$$\frac{\partial S(\alpha_N, \alpha_Z, \beta)}{\partial \alpha_N} = 0$$

$$\frac{\partial S(\alpha_N, \alpha_Z, \beta)}{\partial \alpha_Z} = 0$$

$$K = \langle E \rangle = \frac{\sum_i E_i e^{-\beta E_i + \alpha_Z Z_i + \alpha_N N_i}}{\sum_i e^{-\beta E_i + \alpha_Z Z_i + \alpha_N N_i}}$$

$$N = \langle N \rangle$$

$$Z = \langle Z \rangle$$
11

#### Level Density in the Superfluid Nuclear Model

Nuclear level density for gas of noninteracting quasiparticles will be:

$$\rho(U) = (2\pi)^{-3/2} D^{-1/2} e^{S(\alpha_N, \alpha_Z, \beta)}$$

where:

$$D = \begin{vmatrix} \frac{\partial^2 S}{\partial \beta^2} & \frac{\partial^2 S}{\partial \beta \partial \mu_Z} & \frac{\partial^2 S}{\partial \beta \partial \mu_N} \\ \frac{\partial^2 S}{\partial \beta \partial \mu_Z} & \frac{\partial^2 S}{\partial \mu_Z^2} & 0 \\ \frac{\partial^2 S}{\partial \beta \partial \mu_N} & 0 & \frac{\partial^2 S}{\partial \mu_N^2} \end{vmatrix}$$

Entropy:

$$S(\alpha_N, \alpha_Z, \beta) = 2 \sum_{k=Z,N} \sum_{\nu} \left\{ \ln\left[1 + \exp(-\beta E_{\nu k})\right] + \frac{\beta E_{\nu k}}{1 + \exp(\beta E_{\nu k})} \right\}$$

## Level Density in the Superfluid Nuclear Model

- *N* number of neutrons,
- *Z* number of protons,
- $T=\beta^{-1}$  temperature,
- $\lambda_{\rm N=} \alpha_{\rm N} / \beta$  -chemical potential for neutrons,
- $\lambda_{Z} = \alpha_{Z} / \beta$  -chemical potential for protons,
- $\epsilon_{vN}, \epsilon_{vZ}$  -neutron, proton single- particle energies,
- $G_N, G_Z$  -pairing constants.

 $E_{\nu k} = \sqrt{(\epsilon_{\nu k} - \lambda_k)^2 + \Delta_k^2}$  -quasiparticle energies of neutrons (k=N) and protons (k=Z).

#### Equations determining the saddle point:

$$N = \sum_{\nu} \left( 1 - \frac{\epsilon_{\nu N} - \lambda_Z}{E_{\nu N}} \tanh \frac{\beta E_{\nu N}}{2} \right), \quad Z = \sum_{\nu} \left( 1 - \frac{\epsilon_{\nu Z} - \lambda_Z}{E_{\nu Z}} \tanh \frac{\beta E_{\nu Z}}{2} \right)$$
$$\frac{2}{G_N} = \sum_{\nu} \frac{\tanh \left(\beta E_{\nu N}/2\right)}{E_{\nu N}}, \quad \frac{2}{G_Z} = \sum_{\nu} \frac{\tanh \left(\beta E_{\nu Z}/2\right)}{E_{\nu Z}}$$
$$E(T) = \sum_{k=N,Z} \left\{ \sum_{\nu} \epsilon_{\nu k} \left( 1 - \frac{\epsilon_{\nu N} - \lambda_Z}{E_{\nu N}} \tanh \frac{\beta E_{\nu N}}{2} \right) - \frac{\Delta_k^2}{G_k} \right\}$$

## **Treating the Energy Gaps**

- Depending on the number of basis single particle states the results of the solution of the energy gap equations are varying!
- For the given basis

#### 88 proton levels and 121 neutron levels

it is necessary to determine the constants of pairing interaction  $G_N$  and  $G_Z$  by describing the experimental values of the pairing energies for protons and neutrons:

$$P_N(Z,N) = \frac{1}{2} \{ 2E_{Z,N-1}(0) + E_{Z,N}(0) - E_{Z,N-2}(0) \},\$$
$$P_Z(Z,N) = \frac{1}{2} \{ 2E_{Z-1,N}(0) + E_{Z,N}(0) - E_{Z-2,N}(0) \}$$

•For our basis set we obtained

$$G_{\frac{N}{Z}} = (18 \mp 12 \frac{N-Z}{A}) A^{-1} \mathrm{MeV}$$

# **Comparison with TCSM**

**Results** are near one to another  $\rightarrow$  can use this method

| A   | Z  | $\Delta_N$ | $\Delta_N^{\rm TCSM}$ | $\Delta_Z$ | $\Delta_Z^{\rm TCSM}$ | $\lambda_N$ | $\lambda_N^{\rm TCSM}$ | $\lambda_Z$ | $\lambda_Z^{\rm TCSM}$ |
|-----|----|------------|-----------------------|------------|-----------------------|-------------|------------------------|-------------|------------------------|
| 162 | 66 | 1.031      | 1.030                 | 1.014      | 1.010                 | 47.96       | 47.92                  | 42.32       | 42.27                  |
| 166 | 68 | 1.037      | 1.040                 | 0.970      | 1.060                 | 46.76       | 46.73                  | 41.36       | 41.31                  |
| 228 | 88 | 0.950      | 0.951                 | 1.033      | 1.036                 | 50.03       | 49.99                  | 42.58       | 42.54                  |
| 190 | 76 | 0.960      | 0.96                  | 0.883      | 0.88                  | 47.64       | 47.60                  | 41.49       | 41.44                  |
| 196 | 78 | 0.902      | 0.90                  | 0.860      | 0.86                  | 48.74       | 48.69                  | 42.28       | 42.22                  |
| 200 | 80 | 0.839      | 0.84                  | 0.698      | 0.70                  | 49.09       | 49.04                  | 42.67       | 42.59                  |
| 208 | 82 | 0.450      | 0.45                  | 0.450      | 0.45                  | 49.68       | 49.50                  | 42.93       | 42.83                  |
| 228 | 90 | 1.007      | 1.006                 | 1.111      | 1.100                 | 50.07       | 50.05                  | 43.21       | 43.18                  |
| 230 | 90 | 1.045      | 1.050                 | 1.151      | 1.150                 | 50.34       | 50.31                  | 43.20       | 43.18 <sub>15</sub>    |

#### Validation of the proposed scheme



Energy back –shift:  $U = E^* - 6.6A^{-0.32}$  MeV

*Exp. data are taken from :* E. Melby et al., Phys. Rev. C 63, 044309

### **Level Density as a Function of Excitation Energy**



# Fermi Gas Expression for the Level Density

Treating nucleons as independent Fermi particles, one can obtain

$$\rho_{FG}(U) = \frac{\sqrt{\pi}}{12a^{1/4}U^{5/4}} \exp\left[2\sqrt{aU}\right]$$

*a* -- the level density parameter.

$$U = aT^2, \qquad S = 2aT = 2\sqrt{aU}$$

For particles moving in spherical potential well of radius  $R = r_0 A^{1/3}$ ,  $r_0 = 1.2$  fm, one can estimate:

$$a = \left(\frac{\pi}{3}\right)^{4/3} \frac{2m_N r_0^2}{\hbar^2} A \approx \frac{A}{13.5} \text{ MeV}^{-1}.$$

In the phenomenological calculations of surviving probabilities one usually takes

$$a = A/(10-12) \text{ MeV}^{-1}$$
 18

# **Temperature Dependence of the Excitation Energy** (<sup>296</sup>120 nucleus).



Excitation energy is fitted by the Fermi Gas expression  $U=a T^2$ , with

*a*=A/10.57 MeV<sup>-1</sup>

Level density is fitted by the Fermi Gas expression

$$\rho_{FG}(U) = \frac{\sqrt{\pi}}{12a^{1/4}U^{5/4}} \exp\left[2\sqrt{aU}\right]$$

with

*a*=A/10.57 MeV<sup>-1</sup>

#### **Temperature Dependence of Level Density Parameter**



The influence of shell effects on the level density decreases with temperature increase. Level density parameter *a* decreases with temperature *T* achieving the asymptotic value at large *T*.

<sup>296</sup>120 -  $\alpha$ -chain



#### **Level Density Parameter and Shell Corrections**



#### **Level Density Parameter and Closed Shells**



- Strong shell effects at Z = 120-126 and N = 184,

- Shell effects at Z = 108 and Z = 114 are weaker.

# Summary

• The calculation of PES of various nuclei with Z>104 was performed with use of the Two-Center Shell Model (TCSM). The single-particle spectra corresponding to the minimum of the PES was obtained.

• The level densities of nuclei belonging to the alpha-chains leading to the <sup>296,298,300</sup>120 nuclei were calculated using the statistical (saddle point) approach.

•For nuclei with Z<116 at low excitation energies one can approximate the calculated level density with the Fermi Gas expression with level density parameter

a=A/(12-14), Z<116, a=A/15, Z  $\geq$  116.

•Energy dependence of the level density parameter can be approximated as

$$U = E^* - \Delta_Z - \Delta_N \text{ - for even-even nuclei}$$
$$a(A, U) = \tilde{a}(A) \left[ 1 + \frac{1 - \exp\{-\gamma U/E'_D\}}{U} E_{sh} \right]$$
$$\tilde{a} = \alpha A + \beta A^2$$
$$\alpha = 0.108, \beta = -4.4 \cdot 10^{-6}, \gamma = 0.053 MeV^{-1}$$

•Analysis of the level density parameters and shell corrections demonstrates that the next double magic nucleus beyond 208Pb is probably at



# **Temperature dependence of Chemical Potentials and Energy Gaps.**



<sup>296</sup>120