Hyperon production in antiproton-proton annihilations with PANDA

Karin Schönning, Uppsala University

at the FAIRNESS Workshop for Young Scientists, Sept. 15-21, 2013, Berlin, Germany

Outline

- Strangeness production a probe of QCD in the confinement domain
- Strange and charmed hyperons Y
- Spin observables in $\overline{p}p \rightarrow \overline{Y}Y$
 - spin $\frac{1}{2}$ hyperons - spin $\frac{3}{2}$ hyperons
- CP violation
- Existing data
- Prospects for PANDA

Strangeness production – a probe of QCD in the confinement domain

One of the most important questions in contemporary physics:

"What is the nature of the strong interaction in the confinement domain?"

- Light quark (*u*, *d*) production: non-perturbative, relevant degrees of freedom are hadrons, interactions described by Effective Field Theories.
- Scale of strangeness production $\approx m_s \approx 150$ MeV near QCD cut-off $\Lambda_{\text{QCD}} \approx 200$ MeV \rightarrow relevant degrees of freedom ambiguous.
- Scale of charm production ≈ m_c ≈ 1300 MeV almost ten times larger.
 pQCD more relevant.

 \rightarrow Strangeness production probes the intermediate domain which we know very little about!

Ξ_{cc}^{++} Ω_{cc}^{T} $\Lambda_{c}^{+}, \Sigma_{c}^{+}$ Σ_c^0 $\Sigma_{\rm c}^{++}$ Λ.Σ Ξ⁰ Spin $\Omega_{\rm ccc}^{++}$ Ξ_{cc}^+ Ξ_{cc}^{++} $\Omega_{\rm cc}^+$ Σ^0 Σ_{c}^{++} $\Xi_{\rm c}^{\rm u}$ Δ^{++}

Ω

Strange and charmed hyperons

Hyperons contain one or more heavy quarks (*s,c,b*). This talk: focus on strangeness and single charm.

SU(4) predicts two 20-plets.

We know that SU(4) is not a good symmetry $(m_c >> m_{s,u,d})$.

SU(3) is approximately valid and the SU(3) octet and decuplet are confirmed by experiment.

Strange and charmed hyperons

Strangeness production – a probe of QCD in the confinement domain

Models based on the quark-gluon picture* and on the hadron picture** or a combination of the two ***

 K^+

Ω

*PLB 179 (1986); PLB 165 (1985) 187; NPA 468 (1985) 669; ** PR**C** 31(1985) 1857; PLB179 (1986); PLB 214 (1988) 317; *** PLB 696 (2011) 352.

Open questions in hyperon physics

- What are the relevant degrees of freedom?
- To what extent is SU(3) symmetry broken?
- Do all hyperons have the expected spin and parity?
- Quark structure of hyperons?
- Universe consists of matter, not antimatter. Why?
 CP violation needed as a part of the explaination.*
 CP violation = physics beyond the Standard Model?

* A.D. Sakharov, JETP Lett 5 (1976)24

Spin observables is a powerful tool in testing models.

In a pure ensemble the expectation value of an observable E is :

 $\langle E\rangle = \langle \Psi | E | \Psi \rangle$

where the $|\Psi\rangle$ ket describe every member of the ensemble. Introduce an orthonormal basis $\{|a_k\rangle\}$:

$$\langle E \rangle = \langle \Psi | \left(\sum_{k} | \alpha_{k} \rangle \langle \alpha_{k} | \right) E | \Psi \rangle = \sum_{k} \langle \Psi | \alpha_{k} \rangle \langle \alpha_{k} | E | \Psi \rangle =$$

 $=\sum_{k} \langle \alpha_{k} | \boldsymbol{E} | \boldsymbol{\Psi} \rangle \langle \boldsymbol{\Psi} | \alpha_{k} \rangle = \operatorname{Tr} \left(\boldsymbol{E} | \boldsymbol{\Psi} \rangle \langle \boldsymbol{\Psi} | \right)$

If the density matrix is defined by $\rho \equiv |\Psi\rangle\langle\Psi|$, then $\langle E\rangle = Tr(E\rho)$. The density matrix transforms as

$$\rho_{\text{final}} = T \rho_{\text{initial}} T^{\dagger}$$

In case of decay of a particle with spin density matrix ρ , the angular distribution of the daughter particle is given by

 $I=Tr(T\rho_{initial}T^{\dagger})$

Spin observables in $\overline{p}p \rightarrow YY$

The spin density matrix of a particle with arbitrary spin is given by

$$\rho = \frac{1}{2j+1} \mathscr{I} + \sum_{L=1}^{2j} \rho^{L} \text{ with } \rho^{L} = \frac{2j}{2j+1} \sum_{M=-L}^{L} Q_{M}^{L} r_{M}^{L}$$

$$Polarised$$

$$Polarised$$
where Q_{M}^{L} are hermitian matrices and r_{M}^{L}

polarisation parameters.

- Spin $\frac{1}{2}$: **3** polarisation parameters: r_{1} , r_{0} and r_{1} .
- Spin $\frac{3}{2}$: **15** polarisation parameters: r_{1}^{1} , r_{0}^{1} , r_{1}^{1} , r_{2}^{2} , r_{1}^{2} , r_{0}^{2} , r_{1}^{2} , r_{2}^{2} , r_{3}^{2} , r_{3}^{3} , r_{2}^{3} , r_{2}^{3} , r_{1}^{3} , r_{0}^{3} , r_{1}^{3} , r_{2}^{3} and r_{3}^{3} .
- Degree of polarisation given by:

$$d(\rho) = \sqrt{\sum_{L=1}^{2j} \sum_{M=-L}^{L} (r_M^L)^2}$$

The spin density matrix of one spin $\frac{1}{2}$ particle is given by:

$$\rho(1/2) = \frac{1}{2}(\mathscr{I} + \bar{P} \cdot \bar{\sigma}) = \frac{1}{2} \begin{bmatrix} 1 + P_z & P_x + iP_y \\ P_x - iP_y & 1 - P_z \end{bmatrix}$$

Symmetry from parity conservation (strong production) requires $P_x = P_z = 0$, which gives:

$$\rho(1/2) = \frac{1}{2} \begin{bmatrix} 1 & iP_y \\ -iP_y & 1 \end{bmatrix}$$

Polarisation normal to the production plane!

Spin $\frac{1}{2}$ hyperons:

Parity violating decay \rightarrow the decay products are emitted according to the polarisation of the mother hyperon.

Angular distribution of the final state is given by $I(\theta, \varphi) = Tr(T\rho T^*)$ where T is the decay matrix with one p-conserving part T_s and one p-violating part T_{ρ} .

If the decay product of the hyperon is a hyperon, e.g. $\Xi \rightarrow \Lambda K$, then also β and γ can be obtained from the decay protons of the Λ .

Redefine reference system such that: -Spin of \equiv along \check{z} - p_{Λ} in xz-plane ($p_y = 0$)

Then the proton angular distribution becomes:

$$I(\theta_{p},\phi_{p}) = \frac{1}{4\pi} \left[1 + \alpha_{\Xi}\alpha_{\Lambda}\cos\theta_{p} + \frac{\pi}{4}\alpha_{\Lambda}P\sin\theta_{p}(\beta_{\Xi}\sin\phi_{p} - \gamma_{\Xi}\cos\phi_{p}) \right]$$

The spin observables of the full $pp \rightarrow YY$ process can be obtained from the angular distributions of decay baryons, using

$$\rho^{\bar{B}B} = \frac{I_0^{\bar{Y}Y}}{16\pi} \sum_{\mu,\nu=0}^3 \sum_{i,j=0}^3 P_i^{\bar{p}} P_j^p \chi_{ij\mu\nu} T_{\bar{Y}} T_Y \sigma_\mu^1 \sigma_\nu^2 T_{\bar{Y}}^{\dagger} T_Y^{\dagger}$$

where P_i^{p} is the polarisation vectors of the initial proton, and

$$\chi_{ij\mu\nu} = \underbrace{\frac{\text{Tr}(\sigma_{\mu}^{1}\sigma_{\nu}^{2}M\sigma_{i}^{1}\sigma_{j}^{2}M^{\dagger})}{\text{Tr}(MM^{\dagger})}}_{\text{256 spin variables}} \text{ and } I_{0}^{\bar{Y}Y} = \frac{1}{4}\text{Tr}(MM^{\dagger})$$

Polarised Particle None Beam Target Both None I_{0000} A_{i000} $A_{0\,i00}$ A_{ij00} Scattered $P_{00\mu0}$ $M_{ij\mu0}$ $D_{i0\mu0}$ $K_{0j\mu0}$ Recoil Nijov P_{000v} K_{i00v} D_{0i0v} $C_{ij\mu\nu}$ $C_{i0\mu\nu}$ Both $C_{00\mu\nu}$ $C_{0j\mu\nu}$

- I angular distribution
- A analysing power
- P-polarisation
- D-depolarisation
- K-polarisation transfer
- C spin correlations
- M, N spin corr. tensor

The angular distribution is obtained by the trace $I_0^{\bar{B}B} = \text{Tr}(\rho^{\bar{B}B})$.

With an unpolarised beam and unpolarised taget this becomes

$$I_{\bar{B}B}(\Theta_{\bar{Y}},\hat{\bar{k}},\hat{k}) = \frac{I_0}{64\pi^3} \begin{pmatrix} 1 \\ +P_{\bar{Y},y}\bar{\alpha}\bar{k}_y + P_{Y,y}\alpha k_y \\ +C_{xx}\bar{\alpha}\alpha\bar{k}_x k_x \\ +C_{yy}\bar{\alpha}\alpha\bar{k}_y k_y \\ +C_{zz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{xz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{xz}\bar{\alpha}\alpha\bar{k}_z k_z \\ +C_{zx}\bar{\alpha}\alpha\bar{k}_z k_x \\ \end{pmatrix}$$

k being the direction vector of the decay proton.

Spin $\frac{3}{2}$ case much more complicated.

Erik Thomé has derived the observables in his Ph. D. thesis.*

The spin density matrix is given by

$$\begin{split} \rho(3/2) &= \\ &= \frac{1}{4} \begin{bmatrix} 1 + \sqrt{3}r_0^2 & i\frac{3}{\sqrt{5}}r_{-1}^1 - \sqrt{3}r_1^2 & \sqrt{3}r_2^2 - i\sqrt{3}r_{-2}^3 & -i\sqrt{6}r_{-3}^3 \\ &-i\frac{3}{\sqrt{5}}r_{-1}^1 - \sqrt{3}r_1^2 & 1 - \sqrt{3}r_0^2 & i2\sqrt{\frac{3}{5}}r_{-1}^1 + i3\sqrt{\frac{2}{5}}r_{-1}^3 & \sqrt{3}r_2^2 + i\sqrt{3}r_{-2}^3 \\ &\sqrt{3}r_2^2 + i\sqrt{3}r_{-2}^3 & -i2\sqrt{\frac{3}{5}}r_{-1}^1 - i3\sqrt{\frac{2}{5}}r_{-1}^3 & 1 - \sqrt{3}r_0^2 & i\frac{3}{\sqrt{5}}r_{-1}^1 + \sqrt{3}r_1^2 \\ &i\sqrt{6}r_{-3}^3 & \sqrt{3}r_2^2 - i\sqrt{3}r_{-2}^3 & -i\frac{3}{\sqrt{5}}r_{-1}^1 + \sqrt{3}r_1^2 & 1 + \sqrt{3}r_0^2 \end{bmatrix}$$

*Erik Thomé, Multistrange and Charmed Antihyperon-Hyperon Physics for PANDA Ph. D. Thesis, Uppsala University (2012)

Spin observables in $\overline{p}p \rightarrow YY$

Spin $\frac{3}{2}$ hyperons In the case of $p\overline{p} \rightarrow \Omega\overline{\Omega}$, with the decay $\Omega \rightarrow \Lambda K$, the polarisation parameters r_2^2 , r_1^2 , r_0^2 can be retrieved from the angular distribution of the Λ .

$$r_0^2 = \frac{15}{2\sqrt{3}} \left(\frac{1}{3} - \langle \cos^2 \theta_\Lambda \rangle \right)$$
$$r_2^2 = \frac{8}{3} 1 - \langle \cos^2 \theta_\Lambda \rangle - 2 \langle \sin^2 \theta_\Lambda \sin^2 \phi_\Lambda \rangle$$
$$r_1^2 = 5 \langle \cos \theta_\Lambda \sin \theta_\Lambda \cos \phi_\Lambda \rangle$$

whereas the moduli of $r_{.3}{}^3$, $r_{.2}{}^3$, $r_{.3}{}^3$, $r_{.1}{}^1$ are obtained by combining angular distribution of Λ with the angular distribution of the decay proton from $\Lambda \rightarrow p\pi$.*

> * E. Thomé, Ph.D. Thesis, Uppsala University and later work

Joint Angular Distribution of the Two Decays

 $\langle (3\cos\Theta_{\rm A}-1)\sin\phi_{\rm n}\rangle =$ $=\int_{0}^{\pi}\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{2\pi}I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{\mathbf{p}},\phi_{\mathbf{p}})\times$ $\sin \Theta_{\Lambda} (3 \cos \Theta_{\Lambda} - 1) \sin \Theta_{\rm p} \sin \phi_{\rm p} d\Theta_{\Lambda} d\phi_{\Lambda} d\Theta_{\rm p} d\phi_{\rm p} =$ $=-\frac{3\pi\alpha_{\Lambda}\gamma_{\Omega}r_{-1}^{1}}{20\sqrt{10}}$ $\langle (15\cos\Theta_{\Lambda}-1)\sin\phi_{P} \rangle =$ $=\int_{0}^{\pi}\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{2\pi}I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{\mathrm{p}},\phi_{\mathrm{p}}) imes$ $\sin \Theta_{\Lambda}(15 \cos \Theta_{\Lambda} - 1) \sin \Theta_{p} \sin \phi_{p} d\Theta_{\Lambda} d\phi_{\Lambda} d\Theta_{p} d\phi_{p} =$ $=\frac{\sqrt{3\pi\alpha_{\rm A}\gamma_{\Omega}r_{-1}^3}}{2\sqrt{5}}$ $(\sin \phi_{\rm A} \cos \phi_{\rm p}) =$ $=\int_{0}^{\pi}\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{2\pi}I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{\mathrm{p}},\phi_{\mathrm{p}})\times$ $\sin \Theta_{\Lambda} \sin \Theta_{\rm p} \sin \phi_{\Lambda} \cos \phi_{\rm p} d\Theta_{\Lambda} d\phi_{\Lambda} d\Theta_{\rm p} d\phi_{\rm p} =$ $= -\frac{3\pi^2 \alpha_{\Lambda} \gamma_{\Omega} r_{-2}^3}{1024}$ $\langle \sin \phi_{\Lambda} \cos \phi_{\Lambda} \sin \phi_{P} \rangle =$ $=\int_{-\pi}^{\pi}\int_{-\pi}^{2\pi}\int_{0}^{\pi}\int_{0}^{2\pi}I(\Theta_{\Lambda},\phi_{\Lambda},\Theta_{\rm p},\phi_{\rm p})\times$ $\sin \Theta_{\Lambda} \sin \Theta_{P} \sin \phi_{\Lambda} \cos \phi_{\Lambda} \sin \phi_{P} d\Theta_{\Lambda} d\phi_{\Lambda} d\Theta_{P} d\phi_{P} =$ $= -\frac{\pi \alpha_{\rm A} \gamma_{\Omega}}{640} \left(5\sqrt{6}r_{-3}^3 - 4\sqrt{15}r_{-1}^3 - 3\sqrt{10}r_{-1}^1 \right)$

The moduli of four polarisation parameters can be determined :

$$\begin{split} r_{-1}^{1} &= -\frac{20\sqrt{10}\langle (3\cos\Theta_{\Lambda} - 1)\sin\phi_{\rm p}\rangle}{3\pi\alpha_{\Lambda}\gamma_{\Omega}} \\ r_{-1}^{3} &= \frac{2\sqrt{5}\langle (15\cos\Theta_{\Lambda} - 1)\sin\phi_{\rm p}\rangle}{\sqrt{3}\pi\alpha_{\Lambda}\gamma_{\Omega}} \\ r_{-2}^{3} &= -\frac{1024\langle\sin\phi_{\Lambda}\cos\phi_{\rm p}\rangle}{3\pi^{2}\alpha_{\Lambda}\gamma_{\Omega}} \\ r_{-3}^{3} &= -\frac{1}{5\sqrt{6}} \left(\frac{640}{\pi\alpha_{\Lambda}\gamma_{\Omega}}\langle\sin\phi_{\Lambda}\cos\phi_{\Lambda}\sin\phi_{\rm p}\rangle\right. \\ &+ 4\sqrt{15}r_{-1}^{3} + 3\sqrt{10}r_{-1}^{1}\right) \end{split}$$

Assumption 1: $\alpha_{\Omega} = 0$, Consistent with experiment *

Assumtion 2:
$$\beta_{\Omega} \approx 0$$
, $\gamma_{\Omega} \approx 1$ (not known)

*PDG, J. Phys. G. 33 (2006)

CP violation in hyperon systems

- CP violation of baryon system has never been observed.
- The $\overline{p}p \rightarrow YY$ process suitable for CP measurements (clean, no mixing)
- According to experiment, $\alpha = \overline{\alpha}$ for Λ .
- CP violation parameters:

$$A = \frac{\Gamma \alpha + \overline{\Gamma} \overline{\alpha}}{\Gamma \alpha - \overline{\Gamma} \overline{\alpha}} \simeq \frac{\alpha + \overline{\alpha}}{\alpha - \overline{\alpha}}$$

Consistent with 0 for Λ and Ξ , but to confirm or rule out or confirm χ PT, Supersymmetry, more precise measurements are needed.

$$B = \frac{\Gamma\beta + \overline{\Gamma}\overline{\beta}}{\Gamma\beta - \overline{\Gamma}\overline{\beta}} \simeq \frac{\beta + \overline{\beta}}{\beta - \overline{\beta}}$$

Accessible for Ξ since the polarisation of the decay products can be measured.

$$B' = \frac{\Gamma\beta + \overline{\Gamma}\overline{\beta}}{\Gamma\alpha - \overline{\Gamma}\overline{\alpha}} \simeq \frac{\beta + \overline{\beta}}{\alpha - \overline{\alpha}}$$

No previous measurement.

- Lots of data on $\overline{p}p \rightarrow \overline{\Lambda}\Lambda$ near theshold, mainly from PS185.
- Very few data above 4 GeV.
- Only a few bubble chamber events on $\overline{p}p \to \Xi\Xi$
- No data on $\overline{p}p \to \overline{\Omega}\Omega$ nor $\overline{p}p \to \overline{\Lambda}_c \Lambda_c$

cosv

- Data on P, D, K and C for $\overline{p}p \rightarrow \Lambda\Lambda$
- $\overline{\Lambda}\Lambda$ almost always produced in a spin triplet state: $SF = \frac{1}{4}(1 + C_{xx} - C_{yy} + C_{zz})$
- Neither the quark-gluon picture (dotted) nor hadron exchange (solid and dashed) describe data perfectly.

- Unpolarised beam and target.
- Good vertex resolution necessary.
- For more details, see talk by E. Fioravanti, this Friday.

				Momentum $[GeV/c]$	Reaction	Rate $[s^{-1}]$
Light hyperons $(\Lambda \Sigma)$.				1.64	$\overline{\mathrm{p}}\mathrm{p} ightarrow \Lambda \overline{\Lambda}$	580
Light hyperons (A, 2).			4	$\overline{p}p \rightarrow \Lambda \overline{\Lambda}$	980	
• Fign event ra	le, Iow I	backgi	ound		$\overline{D}D \rightarrow \overline{\Xi}^+\Xi^-$	30
 Acceptance of 	ver full	angula	ar range	15	$\overline{p}p \rightarrow \Lambda\overline{\Lambda}$	120
Channel $1.64 \mathrm{GeV}/c$	Rec. eff.	σ [µb]	Signal	Results	s by Sophie (Grape.
$\overline{p}p \rightarrow \Lambda \overline{\Lambda}$	0.11	64	1		hosis Unner	2000
$\overline{p}p \rightarrow \overline{p}p\pi^+\pi^-$	$1.2 \cdot 10^{-5}$	~ 10	$4.2 \cdot 10^{-5}$	FII. D. 1	nesis, oppsa	ala 2009
Channel $4 \text{GeV}/c$	A100 5 8 5 6		124	= 1.5		
$\overline{\mathrm{p}}\mathrm{p} ightarrow \Lambda\overline{\Lambda}$	0.23	~ 50	1	.9		1
$\overline{p}p \rightarrow \overline{p}p\pi^+\pi^-$	$< 3 \cdot 10^{-6}$	$3.5 \cdot 10^{3}$	$< 2.2 \cdot 10^{-3}$	a la		
$\overline{p}p \rightarrow \overline{\Lambda}\Sigma^0$	$5.1 \cdot 10^{-4}$	~ 50	$2.2 \cdot 10^{-3}$	· · · · · · · · · · · · · · · · · · ·	4 Gev/c	
$\overline{\mathrm{pp}} ightarrow \overline{\Lambda}\Sigma(1385)$	$< 3 \cdot 10^{-6}$	~ 50	$< 1.3 \cdot 10^{-5}$		/	
$\overline{p}p \rightarrow \overline{\Sigma}^0 \Sigma^0$	$< 3\cdot 10^{-6}$	~ 50	$< 1.3 \cdot 10^{-5}$	P 0.5	1	/4
Channel $15 \text{GeV}/c$	0.014120.02	5.52	22.6			,
$\overline{p}p \rightarrow \Lambda \overline{\Lambda}$	0.14	~ 10	1	0[/ ¹	
$\overline{p}p \rightarrow \overline{p}p\pi^+\pi^-$	$< 1 \cdot 10^{-6}$	$1 \cdot 10^{3}$	$< 2 \cdot 10^{-3}$		1	
$\overline{p}p \rightarrow \overline{\Lambda}\Sigma^0$	$2.3 \cdot 10^{-3}$	~ 10	$1.6 \cdot 10^{-2}$	-0.5Å		
$\overline{p}p \rightarrow \overline{\Lambda}\Sigma(1385)$	$3.3 \cdot 10^{-5}$	60	$1.4 \cdot 10^{-3}$	-0.5		
$\overline{p}p \rightarrow \overline{\Sigma}^0 \Sigma^0$	$3.0 \cdot 10^{-4}$	~ 10	$2.1 \cdot 10^{-3}$		$\nearrow pp \rightarrow$	$\Lambda\Lambda$
DPM	$< 1 \cdot 10^{-6}$	$5 \cdot 10^4$	< .09	-1		1
Channel 4 GeV/c	Rec. eff.	$\sigma (\mu b)$	Signal			
$\overline{p}p \rightarrow \overline{\Xi}^+ \Xi^-$	0.19	~ 2	1	-1.5	-0.5 0	0.5 1
$\overline{p}p \rightarrow \overline{\Sigma}^+(1385)\Sigma^-(1385)$	$< 1 \cdot 10^{-6}$	~ 60	$< 2 \cdot 10^{-4}$			cos⊖ _⊼

Heavy hyperons: Simulation studies show high event rate and good detection efficiency over the full angular region.

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012)

	$\bar{p}p\to \bar{\Xi}^+\Xi^-$	$\bar{p}p\to\bar{\Omega}^+\Omega^-$	$\bar{p}p\to \bar{\Lambda}^c \Lambda^+_c$
beam momentum [GeV/c]	4	12	12
reconstruction efficiency [%]	17	30	35
σ	$\sim 2 \mu b$	$\sim 2 \text{ nb}$	$\sim 0.1 \ \mu b$
expected # of events	~30/s	\sim 80/hour	\sim 25/day

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012)

- Measurable in Λ and Ξ decay
- Particle ID requirement gives systematic bias better measure without ID
- Only tracks near the beam pipe should be considered.

Results by Erik Thomé, Ph. D. Thesis, Uppsala University (2012)

Summary

- Hyperon production is a probe of the Strong Interaction in the confinement domain
- CP violation measurements of hyperon systems provide a clean test of *e.g.* physics beyond the Standard Model.
- Spin observales of the $p\overline{p}\to\Omega\Omega$ process recently derived by the Uppsala group.
- Simulation studies by the Uppsala group show excellent prospects for ALL antihyperon-hyperon channels with PANDA:
 - High event rate
 - Low background
 - Good detection efficiency over the full phase space

Thanks to: Sophie Grape, Tord Johansson and Erik Thomé