

Reconstruction of mesons at freeze out via conversion

in Au+Au de 1.23 Agev with HADES

material

 π^{0}, η

e

e

e

Claudia Behnke for the HADES collaboration

Outline

- Motivation: the freeze out cocktail of Au+Au
- Technique: γ reconstruction with HADES
- Simulations: the "ideal case"
- Experimental data:
 - the reality
 - topological background rejection cuts
 - the reality again
- Summary & Outlook

Motivation

HIC at SIS energies First-chance NN Hot and dense stage Freeze-out $(\sim 10 \text{ fm/c})$ collisions stage Long-lived mesons: Baryonic sources: In-medium NN Bremsstrahlung π⁰,η, ω spectral functions • $\Delta, N^* \rightarrow Ne^+e^ \tau_{\pi} = 7.7 \times 10^{7} \, \text{fm/c}$ $\tau_n = 1.5 \times 10^5 \, \text{fm/c}$ $\tau_{\omega} = 23 \, \text{fm/c}$

The freeze out "Cockeqil"

The freeze out "Cockeqil"

Autau Run @ 1.23 Agev, April 2012

- Conversion in HGeant2 with realistic detector geometry
- Analysis of experimental and simulated data is identical

How to measure π^0 and η with HADES?

	Branching Ratio
π^0 , $\eta \rightarrow \gamma\gamma$	0.98, 0.39
π^0 , $\eta \rightarrow \gamma e^+ e^-$	1.17·10 ⁻² , 0.7 ·10 ⁻²
π^0 , $\eta \rightarrow e^+e^-e^+e^-$	3.34·10 ⁻⁵ , <7·10 ⁻⁵

How to reconstruct γ without dedicated detector ?

STAR: PhysRevC.70.044902 CDF: PhysRevD.70.074008 ALICE: Phys. Lett. B 717,162

HADES:

- p+Nb 3.5 GeV: PhysRevC.88.024904

- Ar+KCl 1.765 GeV/u: GSI annual report 2012

conversion probability

conversion probability

Multiplicities

N _{AuAu} = Mult	• N _{events} •	BR · C	ONV · E _{recons}	• E _{accep}	otance
	BR	Conv	E _{rec} ∙ E _{acc}	Total	
$\pi^{0} \rightarrow \gamma \gamma (\rightarrow e^{+}e^{-}e^{+}e^{-})$	0.98	1.44 %		1.4·10 ⁻⁷	
$\pi^0 \rightarrow \gamma e^+ e^- (\rightarrow e^+ e^- e^+ e^-)$	1.17.10-2	1.2 %	0.1 x 0.01	1.4 ·10 ⁻⁷	
$\pi^0 \rightarrow e^+e^-e^+e^-$	3.34 ·10 ⁻⁵			0.3 ·10 ⁻⁷	
		ł		3.1 ·10 ⁻⁷	$N(\pi^{0})_{AuAu} = 1.5 \cdot 10^{4}$
$\eta \rightarrow \gamma \gamma (\rightarrow e^+ e^- e^+ e^-)$	0.39	4 %		4.7·10 ⁻⁷	
$\eta \rightarrow \gamma e^+ e(- \rightarrow e^+ e^- e^+ e^-)$	7.0·10 ⁻³	2 %	0.15 x 0.02	4.2 ·10 ⁻⁷	
$\eta \rightarrow e^+e^-e^+e^-$	<6.9.10-5			2.1·10 ⁻⁷	
	·	1		11.0 • 10-7	N(η) _{AuAu} = 725

Г

Challenges of (di)lepton reconstruction

Low momenta

- One lepton can be bend out by the magnetic field behind the inner MDCs
- Reconstruction efficiency is between 15 55%

Small opening angle

 in 93% cases α is <3°
 RICH ring finder will often identify only 1 ring

URQMD Simulations : ideal case

Lepton identification in experiment

- Statistic:
 - Full Statistic Apr12:
 7.3 · 10⁹ PT3 Trigger evts.
- Combine 2 negative and 2 positive lepton candidates
- Lepton candidate selection
 - momentum < [500] MeV/c

 $-\beta > 0.97$

velocity vs. momentum measured with RPC (resistive plate chamber)

Experimental invariant mass distribution

Topological BG rejection cuts

Events with 4 lepton candidates 11 / Topological cuts to suppress 1.05 combinatorial background α_1 < 2.5° and α_2 < 20° Without topological cuts 0.95 $\theta_{\gamma\gamma} > 5^{\circ}$ material 0 -400 -300 -200 -100 0 100 200 300 400 5 500 1.1 π^{0} , 1.05 0.95 With topological cuts e 0.9 500 -200 -300 -100 200

Experimental invariant mass distribution

... after combinatorial background rejection

- ✓ Full reconstruction of π^0 and of η in Au + Au 1.23 AGeV is feasible
- First spectrum of 4 lepton invariant mass has been reconstructed
 - ✓ π^0 peak is clearly visible!
 - Reconstruction of η is ongoing

Oyelook/ Fyeure

× Find η ;)

- **x** Corrections for detector inefficiencies and acceptance
- Improve electron identification cuts (TMVA, close pair analysis)
- x Improve topological background rejection cuts
- × Extract multiplicities of π^0 and η mesons in Au+Au at 1.23 AGeV
- **x** Additional measurements before SIS 100? Increase π^0 and η rates by:
 - Lowering the magnetic field (acceptance)
 Additional material in the target region (conversion probability)

x Measurements at SIS 100 with electromagnetic calorimeter

Thank you for your attention

Backup Slides

HADES Defector

Low momented leptons

belg vs mom

The SIS18 heavy-ion energy regime

"Resonance matter":

excitation and decay of baryonic resonances are the dominant contribution

life time resonance: ~1fm/c

Probing nuclear matter at:
densities: ρ_B/ρ₀ > 2
temperature: T < 100 MeV
System stays above ground state density for ~10 fm/c

Hot and dense stage: a look inside

ie dominant course at low been operaise

HADES OF SIS 18 and SIS 100

- Running experiment, well understood performance
- Deliver high quality data
- Setup tests with coming heavy-ion runs at SIS-18
- Upgrade improved stability, DAQ and time resolution of the Spectrometer

Date	System	E _{kin} beam
2002	C+C	2.0 GeV/u
2004	C+C	1.0 GeV/u
2005	Ar+KCl	1.76 GeV/u
2006	p+p	1.25, 2.2, 3.5 GeV
2007	d+p	1.25 GeV
2008	p+Nb	3.5 GeV
2012	Au+Au	1.25 GeV/u

Energy and system size dependence of the excess yield

- Multiplicity of e⁺e⁻ pairs from π⁰, η, Δ and ρ
- Good agreement for π⁰ and η (implemented according to the TAPS data)

UrQMD can't fully account for the enhanced pair yield in the intermediate mass region

"Effect" of acceptance

Vertex of leptons coming from conversion in full phase space (left) and in acceptance (right)

Different colors represent different materials

