

Simulation and optimization of the $\overrightarrow{P}ANDA$ detector to measure the form factor of Ds semileptonic decay

Lu Cao IKP1, Forschungszentrum Juelich 19th September, 2013

Outline

- Introduction of Panda detector
- Physical significance on Ds semileptonic decay
- Simulation & decay model
- Reconstruction
- Summary & outlook

Introduction of **PANDA** Detector

more details will be introduced by FIORAVANTI, Elisa on Friday

Physical Significance on Ds Semileptonic Decay

- Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix elements |V_{cd}| and |V_{cs}|.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given invariant mass squared of the lepton-neutrino system q².
- The investigation opens a new approach to improve the measurement of mixing angle for η and η'.

Physical Significance on Ds Semileptonic Decay

- Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix elements |V_{cd}| and |V_{cs}|.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given invariant mass squared of the lepton-neutrino system q².
- The investigation opens a new approach to improve the measurement of mixing angle for η and η'.

Physical Significance on Ds Semileptonic Decay

- Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix elements |V_{cd}| and |V_{cs}|.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given invariant mass squared of the lepton-neutrino system q².
- The investigation opens a new approach to improve the measurement of mixing angle for η and η'.

pbarpSystem				
-> Ds- Ds+	BR_{PDG}			
	2.67%			
-> K- K+ pi-	5.49%			

Production Rate of Ds pair

$$R = \mathcal{L} \cdot \sigma \cdot \varepsilon \cdot t \cdot \mathcal{BR}$$

 $= 10^{32} (cm^2) \cdot \mathbf{10} (nb) \times 10^{-24} (cm^2/b) \cdot 5 \times 10^{-2} \cdot 3 \times 10^6 (s) \cdot 2.67\% \times 5.49\%$ $\simeq 220$

larger cross section? higher reco. efficiency? Previous measurements have been carried on CLEO-c, BaBar.

Simulation & Decay Model

• Hadronic decay mode of Ds meson with $K\overline{K}$ pair:

$$Ds^- \rightarrow K^+ K^- \pi^-$$

 $Br_{\rm PDG} = (5.49 \pm 0.27) \%$

- NOT include in PandaRoot/EvtGen/ D_DALITZ It provides Dalitz amplitude for three-body Kππ decays: D⁺ -> K⁻π⁺π⁺, D⁰ -> K⁻π⁺π⁰, etc.
- Dalitz plot analyses in experiments:

E687	700 evt	[1] PLB 351, 591 (1995)
CLEO	14,400 evt	[2] PRD 79, 072008 (2009)
BaBar	100,000 evt	[3] PRD 83:052001 (2011)

New Decay Model: DS_DALITZ

- The original code is part of the EvtGen package developed jointly for the BaBar and CLEO, where Ds->KKπ is described by a branch of "D_DALITZ".
- DS_DALITZ has been available since the version #21000 of pgenerators in PandaRoot.
 - Define model: /EvtGen/EvtGenModels/EvtDsDalitz.cc
 - Calculate amplitudes: /EvtGen/EvtGenBase/EvtResonance2.cc
 /EvtGen/EvtGenBase/EvtFlatte.cc
- Amplitude for *Ds->KKπ* mode is the summation of the six resonance contributions:

 $\begin{array}{l} \mathsf{K}^{*}(892)\mathsf{K}^{+},\,\mathsf{K}^{*}_{\,\,0}(1430)\,\,\mathsf{K}^{+},\,\mathsf{f}_{0}\,(980)\,\,\pi^{+},\\ \Phi(1020)\,\,\pi^{+},\,\mathsf{f}_{0}\,(1370)\,\,\pi^{+},\,\mathsf{f}_{0}\,(1710)\,\,\pi^{+}. \end{array}$

Testing performance

Reconstruction

Form Factor $f_+(q^2)$ Invariant mass squared of the lepton-neutrino system $q^2 = (E_e + E_v)^2 - |P_e + P_v|^2$

Reconstruction

Reconstruction

Reconstruction of Ds⁻

Reco. Strategy

- Combine the final particles (K⁺ K⁻ pi⁻) and filter with mass window
- Vertex Fit
- Mass Constraint Fit
- Get resolution of selected candidates

Ds- vertex resolution: sigma_x = 80 μm sigma_z = 170 μm

(x,y) projection of fitted decay vertex location distribution of Ds⁻-> K⁺ K⁻ π^-

Ds⁻ Pt relative resolution

Evt = 10k

Reconstructions of pi0 ($\gamma\gamma$) and eta

Pi0 candidates are all possible combinations of photons come from the forward end-cap, back end-cap and barrel EMC.

Minimum Photon Energy

barrel: 50 MeV fwd: 100 MeV bwd: 50 MeV

Barrel and forward end-cap EMC

obarp system	noPhotos
-> Ds- Ds+	
-> eta e+ nu_e	PHOTOS ISGW2
-> pi+ pi- p	bi0 ETA_DALITZ
-> K- K+ pi-	DS_DALITZ

Angular range of EMC components

Summary & Outlook

- DS_DALITZ decay model for Ds->K K π is available in PandaRoot
- Ds->K K π has been reconstructed with the good mass resolution:

	Reconstruction efficiency [%]	Mass resolution [MeV/c²]	Vertex resolution [µm]	
Ds-	18	17	x: 80	z: 170
π_{o}	37	4	-	-
η	11	11	318	675

- Reconstruction of neutral particles (pi0, eta) needs to be improved
- Evaluation of form factor and the total reconstruction efficiency will be obtained
- Extension to Ds-> $e + v + \eta'(958)$

Thanks for your attention

19 September 2013

Backup slides

19 September 2013

Form factor and decay rate of Ds⁺ -> eta e+ nu_e

$$\eta(p)|\bar{s}\gamma_{\mu}(1-\gamma_{5})c|D_{s}(p+q)\rangle = 2f_{+}^{D_{s}\to\eta}(q^{2})p_{\mu} + (f_{+}^{D_{s}\to\eta}(q^{2}) + f_{-}^{D_{s}\to\eta}(q^{2}))q_{\mu}$$

Light cone QCD sum rules

J.Phys.G 38 (2011) 095001 arXiv:1011.6046[hep-ph]

$$\frac{d\Gamma}{dq^2}(D_s \to (\eta, \eta') l\nu_l) = \frac{G_F^2 |V_{cs}|^2}{192\pi^3 m_{D_s}^3} \left[(m_{D_s}^2 + m_{\eta^{(\prime)}}^2 - q^2)^2 - 4m_{D_s}^2 m_{(\eta, \eta')}^2 \right]^{3/2} |f_+^{D_s \to \eta^{(\prime)}}(q^2)|^2$$

Parameterization of the q² dependence so the form factors:

Differential decay rate (massless lepton):

$$f_{\pm}(q^2) = \frac{f_{\pm}(0)}{1 - \alpha \hat{q} + \beta \hat{q}^2} \qquad \hat{q} = q^2 / m_{D_s}^2$$

with

	$f_+^{D_s \to \eta}(0)$	α	β
This Work (LCSR)	0.45 ± 0.14	1.96 ± 0.63	1.12 ± 0.36

Electromagnetic Calorimeter in PANDA

19 September 2013

Electromagnetic Calorimeter (EMC)

Main requirements for EMC

	Required performance value				
Common properties					
energy resolution σ_E/E	$\leq 1\% \oplus \frac{1}{\sqrt{2}}$	$\frac{\leq 2\%}{E/GeV}$			
energy threshold (photons) E_{thres}	$10 \mathrm{MeV}$ (20	0 MeV tole	rable)		
energy threshold (single crystal) E_{xtl}	$3{ m MeV}$				
rms noise (energy equiv.) $\sigma_{E,noise}$	$1{ m MeV}$				
angular coverage $\% 4\pi$	99%				
mean-time-between-failures t_{mtbf}	$2000\mathrm{y}$				
(for individual channel)					Barrel and forward end-cap EMC
Subdetector specific properties	backward	barrel	forwa	rd	
	$(\geq 140^\circ)$	$(\geq 22^{\circ})$	$(\geq 5^{\circ})$)	Deconstruction three holds
energy range from E_{thres} to	$0.7{ m GeV}$	$7.3{ m GeV}$	14.6	${\rm GeV}$	Reconstruction thresholds
angular equivalent of crystal size θ	4°)	1°		• $E_{xtl} = 3 \mathrm{MeV}$
spatial resolution σ_{θ}	0.5°	0.3°	0.1°		
maximum signal load f_{γ} ($E_{\gamma} > E_{xtl}$)	$60\mathrm{k}$	Hz	$500\mathrm{kl}$	Hz	• $E_{cl} = 10 \mathrm{MeV}$
(pp-events) maximum signal load f_{γ} ($E_{\gamma} > E_{xtl}$)	$100 \mathrm{k}$	хHz	$500\mathrm{kl}$	Hz	• $E_{max} = 20 \mathrm{MeV}$
(all events) shaping time t_s	400	ns	$100\mathrm{ns}$	5	
radiation hardness	$0.15\mathrm{Gy}$	$7{ m Gy}$	$125\mathrm{G}$	y	
(maximum annual dose pp-events)					Dynamical Energy Range
radiation hardness	100	Зy	$125\mathrm{G}$	у	
(maximum annual dose from all events)				• bac	kward endcap EMC: $10(20)$ MeV- 0.7 GeV
				• bar	rel EMC: $10(20)$ MeV- 7.3 GeV, and
				• for	ward endcap EMC: $10(20)$ MeV- 14.6 GeV.

Reconstruction of eta (pi+, pi-, pi0)

Photon energy distribution vs. θ

Photon Energy Distribution (EvtGen)

Photon Energy Distribution (EvtGen)

Photon Energy Distribution ("Neutral" list)

Photon Energy Distribution ("Neutral" list)

Photon energy distribution (backward end-cap EMC)

