Motivation

How spinodal instabilities influence observables at FAIR

Christoph Herold with M. Nahrgang, I. Mishustin and M. Bleicher

Frankfurt Institute for Advanced Studies

FAIRNESS, September 16, 2013

The QCD phase diagram

 $NP\chi FD$

Motivation

Finite μ 000000

Motivation 0000		$NP\chi FD$		Zero μ 0000000		Finite µ 00000

The critical point in heavy-ion collisions

(NA49 collaboration, Nucl. Phys. A 830 (2009))

(STAR collaboration, Quark Matter 2012)

Moments/cumulants of particle distribution are sensitive to correlation length

$$egin{aligned} &\langle (\delta m{N})^2
angle \sim \xi^2 \ &\langle (\delta m{N})^3
angle \sim \xi^{4.5} \ &\delta m{N})^4
angle - 3 \langle (\delta m{N})^2
angle^2 \sim \xi^7 \end{aligned}$$

(Stephanov, PRL 102 (2009))

(

(Berdnikov, Rajagopal, PRD 61 (2000))

Motivation	$NP\chi FD$	Zero μ	Finite μ
0000	0000	0000000	000000
T () ()		en e	

The first-order phase transition in heavy-ion collisions

(Sasaki, Friman, Redlich, PRD 77 (2008))

- Dynamical fragmentation
- Droplets
- Non-statistical multiplicity fluctuations

(Steinheimer, Randrup, PRL 109 (2012))

(Mishustin, PoS CPOD (2007))

Motivation	NPχFD	Zero μ	Finite μ
000●	0000	0000000	000000
Effective models of	of QCD		

(Scavenius, Mocsy, Mishustin, Rischke, PRC 64 (2001))

Nambu-Jona-Lasinio model

Polyakov-quark-meson model

(Gupta, Tawari,arXiv:1107.1312v1 [hep-ph] (2011))

(C. Sasaki, APPS.3:659-668 (2010))

Polyakov-NJL model

Motivation	NPχFD	Zero μ	Finite μ
0000	●000	0000000	000000
The NP χ FD mc	odel		

Ideal quark fluid

- + Sigma field
- + Polyakov loop

Explicit Langevin dynamics

$$\mathcal{L} = \overline{q} \left[\mathsf{i} \left(\gamma^{\mu} \partial_{\mu} - \mathsf{i} g_{s} \gamma^{0} A_{0} \right) - g \sigma \right] q + \frac{1}{2} \left(\partial_{\mu} \sigma \right)^{2} - U(\sigma) - \mathcal{U}(\ell, \overline{\ell})$$

Fields and fluid are coupled via

- Mean-field potential $V_{\text{eff}} = U + U + \Omega_{q\bar{q}}$
- Local pressure of quark fluid $p = p(\sigma, \ell, T, \mu)$
- Damping of sigma field due to interaction with quarks
- Energy-momentum exchange between fields and fluid

8000000	00000

The Chiral fluid dynamics model

(I. N. Mishustin and O. Scavenius, Phys. Rev. Lett. 83 (1999))

(M. Nahrgang, C. H., S. Leupold, I. N. Mishustin and

M. Bleicher, arXiv:1105.1962v2)

(K. Paech, H. Stöcker and A. Dumitru, Phys. Rev. C 68 (2003))

- quark fluid coupled to chiral fields
- inclusion of fluctuations
- dissipation and noise

Motivation	NPχFD	Zero μ	Finite μ
	0000		000000

The coupled dynamics of fields and fluid

Langevin equation for the sigma field

$$\partial_{\mu}\partial^{\mu}\sigma + \eta_{\sigma}(T)\partial_{t}\sigma + \frac{\partial V_{eff}}{\partial\sigma} = \xi_{\sigma} , \ \langle \xi_{\sigma}(t)\xi_{\sigma}(t') \rangle = \frac{1}{V}\delta(t-t')m_{\sigma}\eta_{\sigma}\coth\left(\frac{m_{\sigma}}{2T}\right)$$

(Nahrgang, Leupold, C. H., Bleicher, Phys. Rev. C 84 (2011))

Energy momentum and baryon number conservation in ideal quark fluid

$$\partial_{\mu}T^{\mu\nu}_{q}=S^{\nu}_{\sigma}+S^{\nu}_{\ell}, \quad \partial_{\mu}N^{\mu}=0$$

Motivation 0000	tivation NP _χ FD 000 000●				Zero μ 0000000	Finite μ 000000

A dynamical model for the Polyakov loop

Phenomenological kinetic term and biquadratic coupling to chiral fields

$$\mathcal{L} = \mathcal{L}_{\phi} + rac{N_c}{g^2} |\partial_\mu \ell|^2 T^2 - \mathcal{U}(\ell) - rac{h^2}{2} \phi^2 |\ell|^2 T^2$$

(Dumitru, Pisarski, Phys. Lett. B 504 (2001))

Problem when $T = T(x^{\mu})$ due to

$$\frac{\partial}{\partial x^{\mu}} \left[\frac{N_c}{g^2} |\partial_{\mu} \ell|^2 T(x^{\mu})^2 \right]$$

in Euler-Lagrange equation

Possible solutions

- replace T by T₀
- Polyakov loop always in equilibrium
- use simple relaxation equation

Study CP and FO by varying quark-meson coupling g

- Relaxational dynamics in a box
- Fluid dyamical expansion

Motivation	NP _X FD	Zero μ	Finite μ
0000	0000	⊙●000000	000000

Box: Critical slowing down

Relaxation of sigma field

Relaxation of Polyakov loop

(CH, M. Nahrgang, I. N. Mishustin and M. Bleicher, PRC 87 (2013))

Polyakov loop fluctuations

3

|k| (GeV)

0.1

00

Box: Fourier analysis of sigma fluctuations

Intensity of sigma fluctuations:

$$\mathbf{N} = \int_{\Delta k} \mathrm{d}^3 k \ \mathbf{N}_k = \int_{\Delta k} \mathrm{d}^3 k \frac{\mathbf{a}_k^{\dagger} \mathbf{a}_k}{(2\pi)^3 2\omega_k} = \int_{\Delta k} \mathrm{d}^3 k \frac{\omega_k^2 |\sigma_k|^2 + |\dot{\sigma}_k|^2}{(2\pi)^3 2\omega_k}$$

15 20 25 30

t/fm

Box: Fourier analysis of Polyakov loop fluctuations

Intensity of Polyakov loop fluctuations:

$$\mathbf{N} = \int_{\Delta k} \mathrm{d}^3 k \, \, \mathbf{N}_k = \int_{\Delta k} \mathrm{d}^3 k \frac{\mathbf{a}_k^{\dagger} \mathbf{a}_k}{(2\pi)^3 2\omega_k} = \int_{\Delta k} \mathrm{d}^3 k T^2 \frac{\omega_k^2 |\ell_k|^2 + |\dot{\ell}_k|^2}{(2\pi)^3 2\omega_k}$$

	first and an us	avitical point	
0000	0000	0000000	000000
Motivation	$NP\chi FD$	Zero μ	Finite μ

Expansion: first order vs. critical point

(CH, M. Nahrgang, I. N. Mishustin and M. Bleicher, PRC 87 (2013))

- Formation of supercooled phase
- Decay after \sim 2 fm
- Reheating of the quark fluid

- Smooth transition
- Saddle point in $\langle T \rangle$ near T_c
- Slowing down

at first-order

at CP

(CH, M. Nahrgang, I. N. Mishustin and M. Bleicher, PRC 87 (2013))

(C. H., M. Nahrgang, I. N. Mishustin and M. Bleicher, PRC 87 (2013))

Phase diagram of Polyakov-Quark-meson model

- Common phase transition
- Common CEP

Expansion: Nonequilibrium trajectories

- Trajectories close to isentropes at crossover and CEP
- Trajectories influenced by nonequilibrium effects at first-order transition
- At high densities system remains in spinodal region for long time

Possibility for domain formation?

(CH, M. Nahrgang, I. Mishustin, M. Bleicher, in preparation)

European al anno 11 limbr	والمتعالم ومراجلة المتلا والمراجل		
0000	0000	0000000	000000
Motivation	NPχFD	Zero µ	Finite μ

Expansion: High-density domains

First-order

CEP

Azimuthal distribution of net baryon number $\frac{dN}{d\phi}$

- Strong fluctuations at first-order transition
- Signal remains and is not washed out

(CH, M. Nahrgang, I. Mishustin, M. Bleicher, in preparation)

Fourier coefficients $v_n = \langle \cos[n(\phi - \psi_n)] \rangle$

Strong enhancement at first-order transition

(CH, M. Nahrgang, I. Mishustin, M. Bleicher, in preparation)

Conclusions			
Motivation	$NP\chi FD$	Zero μ	Finite μ
0000	0000	0000000	

- Nonequilibrium effects crucially influence a dynamical QCD phase transition
- Domain formation is observable in the order parameter fields
- Density profile evolve inhomogeneously
- Formation of baryon density domains may serve as experimental signal