Search for mesic nuclei in the photoproduction of η and η' mesons off light nuclei

I.Keshelashvili

Group of Prof. B. Krusche University of Basel

Introduction

- Experimental Setup
- Data Analysis
- Results
- Conclusion

Basel group EMC @ PANDA, PreAmp & HV

Low Noise/Low Power (LNP) preamplifier for APD and VPTT

W. Erni, M. Steinacher, I. Keshelashvili, B. Krusche

Material: PbW0₄ - 22 X₀

Crystal size: 2 cm x 2 cm x 20 cm

Energy resolution: 1.54% / $\sqrt{E/[GeV]}$ +0.3%

Number of crystals: 15552

Forward EMC: 3600 – Basel LNP

Per crystal 2xAPD or VPTT

Basel group EMC @ PANDA, PreAmp & HV

University of Basel

I.Keshelashvili

FAIRNESS'13 [4]

Introduction

Strong Interaction

hadron	$c\tau$	mass	flavor	detection
		(GeV)	$\operatorname{content}$	channel
π^0	25 nm	0.13	$u\bar{u}d\bar{d}$	$\gamma\gamma$
π^+	7.8 m	0.14	$u\bar{d}$	direct
π^{-}	7.8 m	0.14	$d\bar{u}$	direct
η	$0.17~\mathrm{nm}$	0.55	$u\bar{u}d\bar{d}s\bar{s}$	$\gamma\gamma$
ω	$23~{ m fm}$	0.78	$u\bar{u}d\bar{d}s\bar{s}$	$\pi^+\pi^-\pi^0$
η'	$0.98~\mathrm{pm}$	0.96	$u\bar{u}d\bar{d}s\bar{s}$	$\pi^+\pi^-\eta$
K^+	3.7 m	0.49	$u\bar{s}$	direct
K^-	$3.7 \mathrm{m}$	0.49	$\bar{u}s$	direct
K^0	27 mm	0.50	$d\bar{s}$	$\pi^+\pi^-$

University of Basel

Why coherent production?

History

1985: Bhalerao & Liu: coupled-channel analysis attractive s-wave η -A; π -induced for A≥12 scatt. lengths: Re: 0.27-0.28 fm Im: 0.19-0.22 fm;

1986: Liu & Haider:

suggestion of η -nucleus bound states for A>10

experiments: inconclusive evidence: Chrien et al. (1988): π^+ +¹⁶O \rightarrow p+ η^{15} O Johnson et al. (1993): π^+ +¹⁸O $\rightarrow\pi^-$ + η^{18} Ne Sokol et al. (99): γ +¹²C \rightarrow p(n)+ η^{11} B(C) $\rightarrow\pi^+$ +n+X

1993 - 2002: analysis of new η -production data from the proton: larger η N-scattering lengths

1991 - 2002: T. Ueda, C. Wilkin,
S.A. Rakityanski and others:
suggestions of bound
²H-, ³H-, ³He-, ⁴He-η states

experiments: threshold behavior of η-production

• η -photoproduction dominated by excitation of S₁₁(1535)

$$\gamma$$
(E1) + N \rightarrow S₁₁ \rightarrow N + η \rightarrow spin-flip transition
J_z: -1 +1/2 -1/2 -1/2 0

• Expectation for light nuclei:

I) ⁴He: J=0, I=0, isoscalar, non spin-flip \rightarrow very small signal (not seen, only upper bounds, V. Hejny et al.)

II) ²H: J=1, I=0, isoscalar, spin-flip \rightarrow small signal (seen, almost in agreement with expectations)

III) ³He: J=1/2, I=1/2, isovector, spin-flip \rightarrow 'large' signal

TAPS - Photoproduction of η – mesic ³He

Photoproduction of eta-mesic ³He M. Pfeiffer at al. Phys. Rev. Lett. 92 (2004) 252001

University of Basel

ANKE - Excitation function: dp \rightarrow ³He η

University of Basel

Experiment

MAMI (<u>Ma</u>inzer <u>Mi</u>krotron)

University of Basel

Glasgow Tagger

How to get the photon energy?

Crystal Ball / TAPS Detector

Polarized Target

Crystal Ball 672 Nal(TI)

PID 24 PI.Sci.

TAPS $BaF_2 + PWO$

VETO 384 PI.Sci.

University of Basel

FAIRNESS'13 [16]

Crystal Ball detector at SPEAR @ SLAC

- SPEAR began 1972
- * **e**⁻ **e**⁺ @ 3GeV
- J/ψ meson
 Nobel price 1976
- * +many charmonium states
- × SLAC, DASY, BNL, MAMI

Crystal Ball / TAPS Detector

University of Basel

Analysis

Data Analysis

University of Basel

I.Keshelashvili

FAIRNESS'13 [20]

Results

 $\gamma + {}^{3}\text{He} \rightarrow {}^{3}\text{He} + \eta$

Physics Letters B 709 (2012) 21-27

Coherent photoproduction of η -mesons off ³He – search for η -mesic nuclei

F. Pheron^a, J. Ahrens^b, J.R.M. Annand^c, H.J. Arends^b, K. Bantawa^d, P.A. Bartolome^b, R. Beck^e, V. Bekrenev^f, H. Berghäuser^g, B. Boillat^a, A. Braghieri^h, D. Branfordⁱ, W.J. Briscoe^j, J. Brudvik^k, S. Cherepnya¹, B. Demissie^j, M. Dieterle^a, E.J. Downie^{b,c,j}, P. Drexler^g, D.I. Glazierⁱ, E. Heid^b, L.V. Fil'kov¹, D. Hornidge^m, D. Howdle^c, O. Jahn^b, I. Jaegle^a, T.C. Judeⁱ, V.L. Kashevarov^{1,b}, I. Keshelashvili^a, R. Kondratievⁿ, M. Korolija^o, M. Kotulla^{a,g}, A. Kulbardis^f, S.P. Kruglov^f, B. Krusche^{a,*}, V. Lisinⁿ, K. Livingston^c, I.J.D. MacGregor^c, Y. Maghrbi^a, J. Mancell^c, D.M. Manley^d, Z. Marinides^j, M. Martinez^b, J.C. McGeorge^c, E. McNicoll^c, D. Mekterovic^o, V. Metag^g, S. Micanovic^o, D.G. Middleton^m, A. Mushkarenkov^h, B.M.K. Nefkens^k, A. Nikolaev^e, R. Novotny^g, M. Oberle^a, M. Ostrick^b, B. Oussena^{b,j}, P. Pedroni^h, A. Polonskiⁿ, S.N. Prakhov^k, J. Robinson^c, G. Rosner^c, T. Rostomyan^{a,h}, S. Schumann^b, M.H. Sikoraⁱ, D.I. Sober^p, A. Starostin^k, I. Supek^o, M. Thiel^g, A. Thomas^b, M. Unverzagt^b, D.P. Wattsⁱ, D. Werthmüller^a, L. Witthauer^a, F. Zehr^a

University of Basel

Coherent η photoproduction off ³He

ME coherent η off ³He - 2γ (left) and $3\pi^{0}/6\gamma$ (right)

Coherent η photoproduction off ³He

Shevchenko et al. 3N system in a microscopic few-body description. Strong dependence on the elastic ηN rescattering. Strong threshold effects, bad reproduction above the breakup threshold

- Fix et al. ³He and ³H in PWIA, in a distorted-wave impulse approximation (DWIA) using optical potential. Strong FSI effects. Underestimates XS.
- Tiator et al. model was based on the PWIA. Strongly underestimates measured XS and does not reproduce the energy dependence.

Coherent η photoproduction off ³He

(Red) $\eta \rightarrow 2\gamma$ decay (Blue) $\eta \rightarrow 6\gamma$ decay

The behavior of the angular distributions of the PWIA is dominated by the nuclear form factor, which is responsible for the strong forward peaking.

Solid (dashed) curves: PWIA with realistic (isotropic) angular distribution for $\gamma n \rightarrow n\eta$

University of Basel

Photoproduction of η – mesic ³He

- nucleon resonances produce opening angle dependent structures in excitation functions
- subtraction of excitation functions for different opening angles can produce artificial structures almost everywhere
- basically no hope to isolate tiny structure from η-mesic state in this complicated landscape!

Photoproduction of η – mesic ³He

 $\gamma + {}^{3}\text{He} \rightarrow (\eta^{3}\text{He}) \rightarrow p + \pi^{0} + X$

Excitation functions

Excitation functions x E_{γ}^{6}

 $\gamma + {}^{3}\text{He} \rightarrow {}^{3}\text{He} + \eta$

- x Strong threshold enhancement and shape of angular distributions confirmed
- *x* Evidence for very strong FSI effects
- *x* Alternative decay channel π^0 -p back-to back suffers from complicated background structure, signal not confirmed

Coherent η -photoproduction off ⁷Li nuclei (Ph.D. work of Yasser Maghrbi)

Coherent η- photoproduction off ⁷Li

ME coherent η off ⁷Li - 2γ (left) and $3\pi^0/6\gamma$ (right)

University of Basel

Coherent η- photoproduction off ⁷Li

Coherent η- photoproduction off ⁷Li

University of Basel

Photoproduction of η – mesic ⁷Li

 $\gamma + {}^{7}\text{Li} \rightarrow (\eta {}^{7}\text{Li}) \rightarrow p + \pi {}^{0} + X$

Coherent η' -photoproduction off LD and ³He nuclei (Ph.D. work of Roman Trojer)

Coherent η' - photoproduction off LD

 $\gamma + d \rightarrow X + \eta' \rightarrow X + \eta(\gamma \gamma) \pi^{0}(\gamma \gamma) \pi^{0}(\gamma \gamma)$

Coherent η' - photoproduction off LD

University of Basel

Coherent η' - photoproduction off ³He

 $\gamma + {}^{3}\text{He} \rightarrow X + \eta' \rightarrow X + \eta(\gamma\gamma)\pi^{0}(\gamma\gamma)\pi^{0}(\gamma\gamma)$

Coherent η'- photoproduction off ³He

University of Basel

FAIRNESS'13 [38]

- X Similarities between ³He and ⁷Li cross section shows strong threshold enhancement
- x ⁷Li decay channel π^0 -p back-to-back suffers from complicated background structure, signal not confirmed
- $x \eta$ ' show also very rapid rise of the total cross section

x We have accepted proposal by the PAC

A2-16/09 Coherent production of $\pi^0 \eta$ pairs off <u>4</u>*He*

SpokespersonsI.Jaegle, I.Keshelashvili, B.Krusche (Basel)Beam1558MeV, circularly polarizedTargetliquid 4HeBeam Time700h

$\eta\pi^{0}$ - photoproduction off deuteron

University of Basel

$\eta \pi^0$ - photoproduction off deuteron

Preliminary results: Ph.D. Work of A. Käser

University of Basel

Thank you for your Attention

University of Basel

Group of Prof. Bernd Krusche

Group members

Manuel Dieterle | Stefanie Garni | Alexander Käser

Irakli Keshelashvili | Markus Oberle | Tigran Rostomyan | Thomas Strub

Dominik Werthmüller | Lilian Witthauer

$\eta\pi^0$ - photoproduction off deuteron

- allows to investigate sequential decays
- η works as isospin filter: Due to isospin conservation, only higher energetic N*(Δ*) resonances can can decay into a ηN*(Δ*) intermediate state

University of Basel

I.Keshelashvili

FAIRNESS'13 [44]

