Investigation of surface homogeneity of mirrors for the CBM-RICH detector and low-mass di-electron feasibility studies

HGS-HIRe for FAIR

Helmholtz Graduate School for Hadron and Ion Re

Elena Lebedeva Justus-Liebig-Universität, Giessen

JUSTUS-LIEBIG-

VIVERSITÄT

GIESSEN







# Agenda

CBM experiment

Surface homogeneity of mirrors for RICH detector

Low-mass di-electrons

# Motivation Exploring the phase diagram of nuclear matter



The CBM research program is focused on the following physics cases:

 The equation-of-state of baryonic matter at neutron star densities

In-medium properties of hadrons  $(\rho, \omega, \phi \rightarrow e^+e^-(\mu^+\mu^-))$ 

Phase transitions from hadronic matter to quarkyonic or partonic matter at high net-baryon densities

Hypernuclei, strange dibaryons and massive strange objects

Lepton pairs are one of the key signatures for CBM

# Motivation

Dileptons as ideal probes to study the properties of the matter created in heavy-ion collisions



- The dilepton signal contains contributions throughout the whole collision
- No strong final state interactions -> leave reaction volume undisturbed

# **Motivation**

All di-electrons in all energy regimes are penetrating probes, i.e. face no strong final state interaction.



Measure electromagnetic radiation from the very dense baryonic matter at all energy ranges:

- Photons: get access to early temperatures
- Low mass vector mesons: get access to whole fireball evaluation and study in medium properties of ρ<sup>0</sup>
  - short life time -> provide information about in-medium modifications
- Range 1 2.5 GeV/c<sup>2</sup> : get direct access to fireball radiation (QGP radiation? Temperature?)
- Charmonium: charm as a probe for dense baryonic matter

Facility for Antiproton and Ion Research

Accelerator complex serving experiments at a time (up to 5) from a broad community

Beam availability for CBM:

- SIS100 synchrotron:
  - Protons up to 29 GeV
  - Au-ions up to 11 AGeV
- SIS300 synchrotron:
  - protons up to 90 GeV
  - > Au-ions up to 35 AGeV



## **E.Lebedeva**

# **CBM** experiment

Exploring the QCD phase diagram — measurement of hadronic and leptonic probes in large acceptance



- **MVD & STS** tracking, momentum determination, vertex reconstruction
- RICH & TRD electron
  identification → pion suppression
  factor ≥ 10<sup>4</sup>
- MUCH muon identification
- **ToF** hadron identification
- **ECAL** photons,  $\pi^0$
- **PSD** event characterization
- Up to 10MHz interaction rate → rare probes → fast reconstruction algorithms are essential!

**E.Lebedeva** 

## The challenge (low-mass di-electrons)



- Lepton pairs are rare probes (branching ratio <10<sup>-4</sup>)
- Large combinatorial background:
  - $\succ$  Dalitz decays ( $\pi^0$ )
  - Conversion pairs
- 1.2%  $\gamma e^+e^-$ **~350**  $\pi^0 \rightarrow 98.8\% \gamma \gamma$

 $\sim 3 \gamma \longrightarrow e^+e^-$ 

~700  $\pi^{+/-}$  could be identified as an electron

## Background due to material budget of the STS

**E.Lebedeva** 

# Principle of Ring Imaging CHerenkov detectors (RICH)

- A cone of Cherenkov light is produced when a particle traverses a suitable medium (radiator), with a velocity greater than the speed of light in the medium (v>c/n, n being the refractive index of the medium).
- In RICH detectors this light cone is focused as ring on a position sensitive photon detector.





Event display for simulation of di-electron decay from  $\boldsymbol{\rho}$ 

# **CBM-RICH** detector

- The CBM-RICH detector is designed to provide electron identification in the momentum range up to 8 GeV/c.
- It will be operated with:
  - 1.7m long CO<sub>2</sub> radiator gas (n=1.00045, threshold for pions 4.65 GeV/c)
  - > MAPMTs (Multi-Anode Photo Multiplier) as photodetector
  - Spherical glass mirrors as focusing element (70 mirror tiles)









Hamamatsu H8500



SLO Olomouc

These foreseen detector components work well together in terms of the covered wavelength range

# Mirror surface homogeneity

A good optical quality of the spherical focusing mirror, in particular in terms of reflectivity and surface quality (homogeneity), is essential for the performance of the RICH detector.

- The optical surface quality determines the imaging quality or "sharpness" of the projected Cherenkov rings and has direct influence on the ring-fitting performance.
- > To quantify the surface non-homogeneity the  $D_0$  measurement is used.
- D<sub>0</sub> is defined as diameter of the circle, which contains 95% of the total light intensity reflected by the mirror when illuminated with a point source.
- D<sub>0</sub> is expected to be the smallest at a distance which is the radius of the mirror curvature.

## Measurement setup

## Experimental setup for D<sub>0</sub> measurements



- a spherical mirror
- b laser point source
- c CCD camera
- R radius of curvature

- Andor iKon CCD camera with 1024×1024 pixels (13.3×13.3 mm<sup>2</sup>)
- Laser point source with wavelength 650nm
- 4 mirror prototypes from SLO Olomous 40×40 cm<sup>2</sup> with radius of curvature 3m; SIMAX glass (6mm), polished, Al+MgF<sub>2</sub> reflective and protective coverage

# Results of the measurements

- Two different measurements were done for each mirror:
  - at the nominal radius
  - for the smallest spot of reflected light
- Ideally both measurements give the same results.
- But due to manufacturing process the mirrors lose some of their concavity leading to a larger radius.

| Mirror  | D <sub>0,min</sub> [mm] | ΔR [mm] | D₀ (R=3m) [mm] |
|---------|-------------------------|---------|----------------|
| SP01    | 1.16                    | +5      | 1.60           |
| SP02    | 1.42                    | +12     | 2.58           |
| SP03    | 0.88                    | +5      | 1.81           |
| SP04    | 1.3                     | +13     | 2.89           |
| Mounted | 0.98                    | +3      | 1.4            |

## **CCD camera view**



R = 3m



16.09.2013

**E.Lebedeva** 

FAIRNESS, Berlin

13

# Ongoing work and plans

- Preparing the program for automatization of the measurement process -> fast measurements and more precise analysis, quality control for the 70 mirror tiles.
- Other methods for study the mirror surface -> see local inhomogeneities (from gluing the mirror mounts):
  - Ronchi test
  - Shark-Hartmann test





mount system

## **RICH** prototype



Real dimension prototype in test beam at CERN in 2011 and 2012

## Movable mirror frame



## Photocamera with various MAPMTs



**E.Lebedeva** 

**FAIRNESS**, Berlin

16.09.2013

# Agenda

## CBM experiment

## Surface homogeneity of mirrors for RICH detector

Low-mass di-electrons

# Input to the simulation

- CbmRoot, GEANT3 package
- Central Au+Au collisions at 25 AGeV and 8 AGeV beam energies
- **Background** UrQMD events (e<sup>±</sup> from γ-conversion,  $\pi^0$ , η-Dalitz decays)
- $\triangleright$  ρ, ω, ω-Dalitz, φ decays generated by PLUTO
- Multiplicity HSD
- Most up-to-date realistic detector descriptions partially including passive materials such as cables (STS), mirror mount structure (RICH), mount structure (TRD)
- > 25 μm gold target

## **Mean multiplicities**

|   | 8 AGeV | 25AGeV |
|---|--------|--------|
| ρ | 9      | 23     |
| ω | 19     | 38     |
| ф | 0.12   | 1.28   |

## **Event reconstruction**

- STS Celular Automaton method (CA) and L1 tracking
- RICH Hough Transform
- FRD Kalman Filter
- Global tracking LIT method



Large track density
 Complicated event reconstruction

## Simulation steps



# **Electron identification**

## **Electron must be identified in all detectors**

- RICH Artificial Neural Network + momentum cut (for 8 AGeV as TRD is not used)
  - Input parameters:
    - A-axis and B-axis;
    - Number of hits in ring,
    - Momentum
    - Position of ring on PMT plane
- TRD Artificial Neural Network
  - Input parameters: energy loss measurements

# $P_{\text{BG}}$

## **ToF -** m<sup>2</sup> vs. momentum

## **Electron identification performance**



El. id. eff. = identified electrons / electrons accepted in STS+RICH+TRD+TOF

Pion supp. = reconstructed pion in STS+RICH projection / pions identified as electrons

# Background rejection strategy



# **Topological cuts**

Combine  $e^{\pm}$  candidates with all other tracks potentially being also an  $e^{\pm}$  (may be the lost partner of a  $\gamma$ -conversion or  $\pi^0$ -Dalitz decay):

- Track segment (ST) = track escaping the identification detectors because being bent off by the magnetic field
- Global track (TT) = track reaching all detectors but escaping e-ID because of the limited efficiency



# **BG** contributions

Central Au-Au collisions at 25 AGeV



## Percentage of the different sources of background pairs



γ-γ – e<sup>+</sup> and e<sup>-</sup> from different γ-conversions
 π<sup>0</sup>-π<sup>0</sup> – e<sup>+</sup> and e<sup>-</sup> from different π<sup>0</sup>-Dalitz decays
 o. - e<sup>±</sup> from other sources including misidentification

## **E.Lebedeva**

# Results, central Au+Au at 25 AGeV



25

# cocktail/background vs. minv

## After all cuts applied



The cocktail-to-background ratio around 100 for masses around 0.5 GeV/ $c^2$  is very well compatible with existing di-lepton experiments and will allow for a precise investigation of low mass di-electron pairs.

E.Lebedeva

## Summary

very good optical surface quality of the mirrors from Olomouc with D<sub>0</sub> < 3mm - well below the anticipated photon detector pixel granularity of 5-6mm.

Feasibility studies showed that CBM setup will allow the precise investigation of low-mass di-electrons.

# Thank you for your attention

**16.09.2013** E.Lebedeva FAIRNESS, Berlin

# Back-up

# Global tracking performance for $e^{\pm}$ from $\rho$

## Central Au-Au collisions at 25 AGeV



Global eff. = reconstructed electron tracks in detector(s) / electron tracks with 4 consecutive points in STS, with 7 hits in RICH ring, with 6 points in TRD and 1 point in ToF

## Transverse momentum cut

## Central Au+Au at 25 AGeV

## **Single electron cut**



## **Topological cuts**

> Select **closest neighbor track** and plot opening angle  $\theta_{e,rec}$  versus  $\sqrt{p_e p_{rec}}$ 

- > Track segment cut, 25 AGeV : reject only 1.3% of  $\rho^0$ , but for 14% of e<sup>±</sup> pairs from  $\gamma$ -conversion and 13% from  $\pi^0$ -Dalitz decays the true partner is found
- > Global track cut, 25 AGeV: reject only 0.6% of  $\rho^0$ , but 6% of e<sup>±</sup> pairs from  $\gamma$ -conversion and 6% from  $\pi^0$ -Dalitz decays



The triangle shows the cut area

6.09.2013

# Efficiency of cuts

## Central Au-Au collisions at 25 AGeV



Signal – all pairs originating from one source ( $\pi^0$ ,  $\eta$ ,  $\omega$  Dalitz decay,  $\rho$ ,  $\omega$ ,  $\phi$  direct decay) Background – random combinations between e+ and e- from different sources

## \*Pairs from $\gamma$ -conversion (M<sub>ee</sub><0.2GeV/c<sup>2</sup>) are counted as signal

**E.Lebedeva** 

## **Mismatches contributions**



- True match both tracks from BG pair were correctly matched in all detectors
- True match (e<sup>±</sup>) both tracks from BG pair are e<sup>±</sup> and were correctly matched
- True match (not e<sup>±</sup>) both tracks were correctly matched and at least one of the track from BG pair is not e<sup>±</sup>, but was identified as e<sup>±</sup>
- Mismatch one of the track from BG pair was not correctly matched in one of detectors

# Results central Au+Au at 8 AGeV

